Nejvíce citovaný článek - PubMed ID 26011725
Agreement on intrapartum cardiotocogram recordings between expert obstetricians
The second Signal Processing and Monitoring in Labor workshop gathered researchers who utilize promising new research strategies and initiatives to tackle the challenges of intrapartum fetal monitoring. The workshop included a series of lectures and discussions focusing on: new algorithms and techniques for cardiotocogoraphy (CTG) and electrocardiogram acquisition and analyses; the results of a CTG evaluation challenge comparing state-of-the-art computerized methods and visual interpretation for the detection of arterial cord pH <7.05 at birth; the lack of consensus about the role of intrapartum acidemia in the etiology of fetal brain injury; the differences between methods for CTG analysis "mimicking" expert clinicians and those derived from "data-driven" analyses; a critical review of the results from two randomized controlled trials testing the former in clinical practice; and relevant insights from modern physiology-based studies. We concluded that the automated algorithms performed comparably to each other and to clinical assessment of the CTG. However, the sensitivity and specificity urgently need to be improved (both computerized and visual assessment). Data-driven CTG evaluation requires further work with large multicenter datasets based on well-defined labor outcomes. And before first tests in the clinic, there are important lessons to be learnt from clinical trials that tested automated algorithms mimicking expert CTG interpretation. In addition, transabdominal fetal electrocardiogram monitoring provides reliable CTG traces and variability estimates; and fetal electrocardiogram waveform analysis is subject to promising new research. There is a clear need for close collaboration between computing and clinical experts. We believe that progress will be possible with multidisciplinary collaborative research.
- Klíčová slova
- artificial intelligence, cardiotocography, electronic fetal monitoring, health data, hypoxic-ischemic encephalopathy, intrapartum care, sensitivity, specificity,
- MeSH
- acidóza diagnóza MeSH
- algoritmy * MeSH
- elektrokardiografie metody MeSH
- kardiotokografie metody MeSH
- lidé MeSH
- monitorování plodu metody MeSH
- počítačové zpracování signálu MeSH
- prenatální diagnóza MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- kongresy MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Geografické názvy
- Spojené království MeSH
Non-adaptive signal processing methods have been successfully applied to extract fetal electrocardiograms (fECGs) from maternal abdominal electrocardiograms (aECGs); and initial tests to evaluate the efficacy of these methods have been carried out by using synthetic data. Nevertheless, performance evaluation of such methods using real data is a much more challenging task and has neither been fully undertaken nor reported in the literature. Therefore, in this investigation, we aimed to compare the effectiveness of two popular non-adaptive methods (the ICA and PCA) to explore the non-invasive (NI) extraction (separation) of fECGs, also known as NI-fECGs from aECGs. The performance of these well-known methods was enhanced by an adaptive algorithm, compensating amplitude difference and time shift between the estimated components. We used real signals compiled in 12 recordings (real01-real12). Five of the recordings were from the publicly available database (PhysioNet-Abdominal and Direct Fetal Electrocardiogram Database), which included data recorded by multiple abdominal electrodes. Seven more recordings were acquired by measurements performed at the Institute of Medical Technology and Equipment, Zabrze, Poland. Therefore, in total we used 60 min of data (i.e., around 88,000 R waves) for our experiments. This dataset covers different gestational ages, fetal positions, fetal positions, maternal body mass indices (BMI), etc. Such a unique heterogeneous dataset of sufficient length combining continuous Fetal Scalp Electrode (FSE) acquired and abdominal ECG recordings allows for robust testing of the applied ICA and PCA methods. The performance of these signal separation methods was then comprehensively evaluated by comparing the fetal Heart Rate (fHR) values determined from the extracted fECGs with those calculated from the fECG signals recorded directly by means of a reference FSE. Additionally, we tested the possibility of non-invasive ST analysis (NI-STAN) by determining the T/QRS ratio. Our results demonstrated that even though these advanced signal processing methods are suitable for the non-invasive estimation and monitoring of the fHR information from maternal aECG signals, their utility for further morphological analysis of the extracted fECG signals remains questionable and warrants further work.
- Klíčová slova
- electronic fetal monitoring (EFM), fetal electrocardiogram (fECG), independent component analysis (ICA), non-invasive ST analysis (NI-STAN), non-invasive fetal ECG (NI-fECG), non-invasive fetal heart rate (NI-fHR) estimation, nonadaptive methods, principal component analysis (PCA),
- Publikační typ
- časopisecké články MeSH
Cardiotocography (CTG) is a standard tool for the assessment of fetal well-being during pregnancy and delivery. However, its interpretation is associated with high inter- and intra-observer variability. Since its introduction there have been numerous attempts to develop computerized systems assisting the evaluation of the CTG recording. Nevertheless these systems are still hardly used in a delivery ward. Two main approaches to computerized evaluation are encountered in the literature; the first one emulates existing guidelines, while the second one is more of a data-driven approach using signal processing and computational methods. The latter employs preprocessing, feature extraction/selection and a classifier that discriminates between two or more classes/conditions. These classes are often formed using the umbilical cord artery pH value measured after delivery. In this work an approach to Fetal Heart Rate (FHR) classification using pH is presented that could serve as a benchmark for reporting results on the unique open-access CTU-UHB CTG database, the largest and the only freely available database of this kind. The overall results using a very small number of features and a Least Squares Support Vector Machine (LS-SVM) classifier, are in accordance to the ones encountered in the literature and outperform the results of a baseline classification scheme proving the utility of using advanced data processing methods. Therefore the achieved results can be used as a benchmark for future research involving more informative features and/or better classification algorithms.
- Klíčová slova
- Cardiotocography (CTG), Classification, Feature selection, Fetal heart rate (FHR), Least Squares Support Vector Machines (LS-SVMs),
- Publikační typ
- časopisecké články MeSH