Nejvíce citovaný článek - PubMed ID 7547758
The second Signal Processing and Monitoring in Labor workshop gathered researchers who utilize promising new research strategies and initiatives to tackle the challenges of intrapartum fetal monitoring. The workshop included a series of lectures and discussions focusing on: new algorithms and techniques for cardiotocogoraphy (CTG) and electrocardiogram acquisition and analyses; the results of a CTG evaluation challenge comparing state-of-the-art computerized methods and visual interpretation for the detection of arterial cord pH <7.05 at birth; the lack of consensus about the role of intrapartum acidemia in the etiology of fetal brain injury; the differences between methods for CTG analysis "mimicking" expert clinicians and those derived from "data-driven" analyses; a critical review of the results from two randomized controlled trials testing the former in clinical practice; and relevant insights from modern physiology-based studies. We concluded that the automated algorithms performed comparably to each other and to clinical assessment of the CTG. However, the sensitivity and specificity urgently need to be improved (both computerized and visual assessment). Data-driven CTG evaluation requires further work with large multicenter datasets based on well-defined labor outcomes. And before first tests in the clinic, there are important lessons to be learnt from clinical trials that tested automated algorithms mimicking expert CTG interpretation. In addition, transabdominal fetal electrocardiogram monitoring provides reliable CTG traces and variability estimates; and fetal electrocardiogram waveform analysis is subject to promising new research. There is a clear need for close collaboration between computing and clinical experts. We believe that progress will be possible with multidisciplinary collaborative research.
- Klíčová slova
- artificial intelligence, cardiotocography, electronic fetal monitoring, health data, hypoxic-ischemic encephalopathy, intrapartum care, sensitivity, specificity,
- MeSH
- acidóza diagnóza MeSH
- algoritmy * MeSH
- elektrokardiografie metody MeSH
- kardiotokografie metody MeSH
- lidé MeSH
- monitorování plodu metody MeSH
- počítačové zpracování signálu MeSH
- prenatální diagnóza MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- kongresy MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Geografické názvy
- Spojené království MeSH
Cardiotocography (CTG) is a standard tool for the assessment of fetal well-being during pregnancy and delivery. However, its interpretation is associated with high inter- and intra-observer variability. Since its introduction there have been numerous attempts to develop computerized systems assisting the evaluation of the CTG recording. Nevertheless these systems are still hardly used in a delivery ward. Two main approaches to computerized evaluation are encountered in the literature; the first one emulates existing guidelines, while the second one is more of a data-driven approach using signal processing and computational methods. The latter employs preprocessing, feature extraction/selection and a classifier that discriminates between two or more classes/conditions. These classes are often formed using the umbilical cord artery pH value measured after delivery. In this work an approach to Fetal Heart Rate (FHR) classification using pH is presented that could serve as a benchmark for reporting results on the unique open-access CTU-UHB CTG database, the largest and the only freely available database of this kind. The overall results using a very small number of features and a Least Squares Support Vector Machine (LS-SVM) classifier, are in accordance to the ones encountered in the literature and outperform the results of a baseline classification scheme proving the utility of using advanced data processing methods. Therefore the achieved results can be used as a benchmark for future research involving more informative features and/or better classification algorithms.
- Klíčová slova
- Cardiotocography (CTG), Classification, Feature selection, Fetal heart rate (FHR), Least Squares Support Vector Machines (LS-SVMs),
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Cardiotocography (CTG) is a monitoring of fetal heart rate and uterine contractions. Since 1960 it is routinely used by obstetricians to assess fetal well-being. Many attempts to introduce methods of automatic signal processing and evaluation have appeared during the last 20 years, however still no significant progress similar to that in the domain of adult heart rate variability, where open access databases are available (e.g. MIT-BIH), is visible. Based on a thorough review of the relevant publications, presented in this paper, the shortcomings of the current state are obvious. A lack of common ground for clinicians and technicians in the field hinders clinically usable progress. Our open access database of digital intrapartum cardiotocographic recordings aims to change that. DESCRIPTION: The intrapartum CTG database consists in total of 552 intrapartum recordings, which were acquired between April 2010 and August 2012 at the obstetrics ward of the University Hospital in Brno, Czech Republic. All recordings were stored in electronic form in the OB TraceVue®;system. The recordings were selected from 9164 intrapartum recordings with clinical as well as technical considerations in mind. All recordings are at most 90 minutes long and start a maximum of 90 minutes before delivery. The time relation of CTG to delivery is known as well as the length of the second stage of labor which does not exceed 30 minutes. The majority of recordings (all but 46 cesarean sections) is - on purpose - from vaginal deliveries. All recordings have available biochemical markers as well as some more general clinical features. Full description of the database and reasoning behind selection of the parameters is presented in the paper. CONCLUSION: A new open-access CTG database is introduced which should give the research community common ground for comparison of results on reasonably large database. We anticipate that after reading the paper, the reader will understand the context of the field from clinical and technical perspectives which will enable him/her to use the database and also understand its limitations.
- MeSH
- Apgar skóre MeSH
- databáze faktografické * MeSH
- distres plodu diagnóza MeSH
- dospělí MeSH
- fetální krev chemie MeSH
- kardiotokografie * MeSH
- koncentrace vodíkových iontů MeSH
- lidé MeSH
- počítačové zpracování signálu * MeSH
- porod MeSH
- poruchy acidobazické rovnováhy MeSH
- přístup k informacím * MeSH
- srdeční frekvence plodu * MeSH
- těhotenství MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH