Nejvíce citovaný článek - PubMed ID 26201596
In the last decade, significant advances have been made towards the rational design of proteins, DNA, and other organic nanostructures. The emerging possibility to precisely engineer molecular structures resulted in a wide range of new applications in fields such as biotechnology or medicine. The complexity and size of the artificial molecular systems as well as the number of interactions are greatly increasing and are manifesting the need for computational design support. In addition, a new generation of AI-based structure prediction tools provides researchers with completely new possibilities to generate recombinant proteins and functionalized DNA nanostructures. In this study, we present Catana, a web-based modelling environment suited for proteins and DNA nanostructures. User-friendly features were developed to create and modify recombinant fusion proteins, predict protein structures based on the amino acid sequence, and manipulate DNA origami structures. Moreover, Catana was jointly developed with the novel Unified Nanotechnology Format (UNF). Therefore, it employs a state-of-the-art coarse-grained data model, that is compatible with other established and upcoming applications. A particular focus was put on an effortless data export to allow even inexperienced users to perform in silico evaluations of their designs by means of molecular dynamics simulations. Catana is freely available at http://catana.ait.ac.at/.
- MeSH
- DNA chemie MeSH
- konformace nukleové kyseliny MeSH
- nanostruktury * chemie MeSH
- nanotechnologie metody MeSH
- nukleové kyseliny * MeSH
- rekombinantní fúzní proteiny MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- nukleové kyseliny * MeSH
- rekombinantní fúzní proteiny MeSH
DNA nanotechnology has yielded remarkable advances in composite materials with diverse applications in biomedicine. The specificity and predictability of building 3D structures at the nanometer scale make DNA nanotechnology a promising tool for uses in biosensing, drug delivery, cell modulation, and bioimaging. However, for successful translation of DNA nanostructures to real-world applications, it is crucial to understand how they interact with living cells, and the consequences of such interactions. In this review, we summarize the current state of knowledge on the interactions of DNA nanostructures with cells. We identify key challenges, from a cell biology perspective, that influence progress towards the clinical translation of DNA nanostructures. We close by providing an outlook on what questions must be addressed to accelerate the clinical translation of DNA nanostructures. STATEMENT OF SIGNIFICANCE: Self-assembled DNA nanostructures (DNs) offers unique opportunities to overcome persistent challenges in the nanobiotechnology field. However, the interactions between engineered DNs and living cells are still not well defined. Critical systematization of current cellular models and biological responses triggered by DNs is a crucial foundation for the successful clinical translation of DNA nanostructures. Moreover, such an analysis will identify the pitfalls and challenges that are present in the field, and provide a basis for overcoming those challenges.
- Klíčová slova
- Bionano interactions, Cellular uptake, Cytotoxicity, DNA nanotechnology, Nanotechnology, Protein corona,
- MeSH
- DNA chemie MeSH
- lékové transportní systémy metody MeSH
- nanostruktury * chemie MeSH
- nanotechnologie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- DNA MeSH
The domains of DNA and RNA nanotechnology are steadily gaining in popularity while proving their value with various successful results, including biosensing robots and drug delivery cages. Nowadays, the nanotechnology design pipeline usually relies on computer-based design (CAD) approaches to design and simulate the desired structure before the wet lab assembly. To aid with these tasks, various software tools exist and are often used in conjunction. However, their interoperability is hindered by a lack of a common file format that is fully descriptive of the many design paradigms. Therefore, in this paper, we propose a Unified Nanotechnology Format (UNF) designed specifically for the biomimetic nanotechnology field. UNF allows storage of both design and simulation data in a single file, including free-form and lattice-based DNA structures. By defining a logical and versatile format, we hope it will become a widely accepted and used file format for the nucleic acid nanotechnology community, facilitating the future work of researchers and software developers. Together with the format description and publicly available documentation, we provide a set of converters from existing file formats to simplify the transition. Finally, we present several use cases visualizing example structures stored in UNF, showcasing the various types of data UNF can handle.
- Klíčová slova
- DNA nanotechnology, DNA origami, DNA-protein engineering, RNA nanotechnology, coarse-grained simulations, computer-aided design, file format, molecular file formats,
- Publikační typ
- časopisecké články MeSH
DNA nanostructures (DNs) can be designed in a controlled and programmable manner, and these structures are increasingly used in a variety of biomedical applications, such as the delivery of therapeutic agents. When exposed to biological liquids, most nanomaterials become covered by a protein corona, which in turn modulates their cellular uptake and the biological response they elicit. However, the interplay between living cells and designed DNs are still not well established. Namely, there are very limited studies that assess protein corona impact on DN biological activity. Here, we analyzed the uptake of functionalized DNs in three distinct hepatic cell lines. Our analysis indicates that cellular uptake is linearly dependent on the cell size. Further, we show that the protein corona determines the endolysosomal vesicle escape efficiency of DNs coated with an endosome escape peptide. Our study offers an important basis for future optimization of DNs as delivery systems for various biomedical applications.
- Klíčová slova
- DNA nanotechnology, bionano interactions, cellular uptake, endolysosomal escape, nanotechnology, protein corona,
- MeSH
- adsorpce MeSH
- DNA chemie metabolismus MeSH
- endozomy metabolismus MeSH
- kationické antimikrobiální peptidy chemie metabolismus MeSH
- konformace nukleové kyseliny MeSH
- lidé MeSH
- lyzozomy metabolismus MeSH
- nádorové buněčné linie MeSH
- nanostruktury chemie MeSH
- proteinová korona chemie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aurein 1.2 peptide MeSH Prohlížeč
- DNA MeSH
- kationické antimikrobiální peptidy MeSH
- proteinová korona MeSH