Nejvíce citovaný článek - PubMed ID 26280307
The long-term variation of Cd and Zn hyperaccumulation by Noccaea spp and Arabidopsis halleri plants in both pot and field conditions
Potentially toxic element (PTE) contamination deteriorates agricultural land. This study explored the accumulation of excess PTEs (Cd, Pb, and Zn) in soils by shoots of herbaceous plants growing on alluvial sediments of an abandoned mining/smelting site near the Litavka River, Czech Republic, as a means of soil remediation. Determination of total Cd, Pb, and Zn, contents in soil and plant samples decomposed with HNO3 + HCl + HF, HNO3, and H2O2, respectively, were carried out by inductively coupled optical emission spectrometry. The soil Cd, Pb, and Zn contents in the studied site ranged from 40 to 65, 3183 to 3897, and 5108 to 6553 mg kg-1, respectively, indicating serious soil contamination compared to the limits allowed by the FAO/WHO and the Czech Republic. Slightly acidic soil reactions and negative correlations between the pH, C, and N supported the assumption of relative solubility, mobility, and accumulation of studied PTEs by herbaceous species. Shoot accumulation of Cd, Pb, and Zn varied in 22 of 23 species recording a Cd content above the permissible limit. The Zn content in all plants was above the WHO limit. Except for Arabidopsis halleri, with a bioaccumulation factor (BAFshoot) > 1 for Cd and Zn, Equisetum arvense recorded a comparatively higher Cd content (10.3-28 mg kg-1) than all other species. Silene vulgaris (Moench), Leucanthemum vulgare, E. arvense, Achillea millefolium, Carex sp., Dianthus deltoides, Campanula patula, Plantago lanceolata, and Rumex acetosa accumulated more Zn than many plants (> 300 mg kg-1). Although E. arvense had a BAF < 1, it accumulated > 1000 mg Zn kg-1 and supported the phytoextraction of Zn. Only 10 species accumulated Pb above the limit permissible in plants, with L. vulgare recording the highest concentration (40 mg kg-1) among all species. Therefore, the shoots of several plant species showed promising PTE accumulation abilities and deserve more detailed studies concerning their potential use for phytoremediation of Cd-, Pb-, or Zn-contaminated soils.
- Klíčová slova
- Equisetum arvense, Leucanthemum vulgare, Alluvial sediment, Phytoextraction, Phytoremediation, Shoot accumulation,
- MeSH
- biodegradace MeSH
- hornictví MeSH
- kadmium metabolismus MeSH
- látky znečišťující půdu * metabolismus MeSH
- olovo metabolismus MeSH
- půda chemie MeSH
- rostliny * metabolismus MeSH
- zinek metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- kadmium MeSH
- látky znečišťující půdu * MeSH
- olovo MeSH
- půda MeSH
- zinek MeSH
(1) Background: Populus ×canescens (Aiton) Sm. is a fast-growing woody plant belonging to the family Salicaceae. Two poplar genotypes characterized by unique phenotypic traits (TP11 and TP20) were chosen to be characterized and tested for a physiological and transcriptomic response to Cd stress. (2) Methods: A comparative analysis of the effects of exposure to high cadmium (Cd) concentrations (10 µM and 100 µM) of TP11 and TP20 was performed. (3) Results: Neither of the tested Cd concentration negatively affected plant growth; however, the chlorophyll content significantly decreased. The potassium (K) content was higher in the shoots than in the roots. The magnesium concentrations were only slightly affected by Cd treatment. The zinc content in the shoots of TP20 was lower than that in the shoots of TP11. Cd accumulation was higher in the roots than in the shoots. After 10 days of exposure, 10 µM Cd resulted in comparable amounts of Cd in the roots and shoots of TP20. The most significant change in transcript amount was observed in endochitinase 2, 12-oxophytodienoate reductase 1 and phi classglutathione S-transferase. (4) Conclusions: Our study provided new insights for effective assessing the ability of different poplar genotypes to tolerate Cd stress and underlying Cd tolerance.
- Klíčová slova
- cadmium, gene expression, grey poplar, microsatellite analysis, mineral uptake, translocation factor,
- Publikační typ
- časopisecké články MeSH
Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was applied for the determination of Cd and Zn distributions within the leaves of Cd- and Zn-hyperaccumulating plants, Noccaea caerulescens, N. praecox, and Arabidopsis halleri, in contrast to nonaccumulator species, Thlaspi arvense and A. thaliana. The elemental mapping of the selected leaf area was accomplished via line scans with a 110-μm-diameter laser beam at a 37-μm s-1 scan speed and repetition rate of 10 Hz. The lines were spaced 180 μm apart and ablated at an energy density of 2 J cm-2. The elemental imaging clearly confirmed that Cd was predominantly distributed within the parenchyma of the T. arvense, whereas in the Noccaea spp. and A. halleri, the highest intensity Cd signal was observed in the veins of the leaves. For Zn, higher intensities were observed in the veins for all the plant species except for A. thaliana. Close relationships between Zn and Ca were identified for the Noccaea spp. leaves. These relationships were not confirmed for A. halleri. Significant correlations were also proved between the Cd and Zn distribution in A. halleri, but not for the Noccaea spp. For both T. arvense and A. thaliana, no relevant significant relationship for the interpretation of the results was observed. Thus, the LA-ICP-MS imaging is proved as a relevant technique for the description and understanding of the elements in hyperaccumulating or highly accumulating plant species, although its sensitivity for the natural element contents in nonaccumulator plant species is still insufficient.
- Klíčová slova
- Brassicaceae, Elemental mapping, Hyperaccumulating plants, Laser ablation, Trace elements,
- MeSH
- Arabidopsis chemie MeSH
- Brassicaceae chemie MeSH
- kadmium MeSH
- kořeny rostlin MeSH
- listy rostlin chemie MeSH
- monitorování životního prostředí * MeSH
- stopové prvky analýza MeSH
- Thlaspi chemie MeSH
- zinek MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kadmium MeSH
- stopové prvky MeSH
- zinek MeSH