Nejvíce citovaný článek - PubMed ID 26290579
Electron transfer (ET) between neutral and cationic tryptophan residues in the azurin construct [ReI(H126)(CO)3(dmp)](W124)(W122)CuI (dmp = 4,7-Me2-1,10-phenanthroline) was investigated by Born-Oppenheimer quantum-mechanics/molecular mechanics/molecular dynamics (QM/MM/MD) simulations. We focused on W124•+ ← W122 ET, which is the middle step of the photochemical hole-hopping process *ReII(CO)3(dmp•-) ← W124 ← W122 ← CuI, where sequential hopping amounts to nearly 10,000-fold acceleration over single-step tunneling (ACS Cent. Sci. 2019, 5, 192-200). In accordance with experiments, UKS-DFT QM/MM/MD simulations identified forward and reverse steps of W124•+ ↔ W122 ET equilibrium, as well as back ET ReI(CO)3(dmp•-) → W124•+ that restores *ReII(CO)3(dmp•-). Strong electronic coupling between the two indoles (≥40 meV in the crossing region) makes the productive W124•+ ← W122 ET adiabatic. Energies of the two redox states are driven to degeneracy by fluctuations of the electrostatic potential at the two indoles, mainly caused by water solvation, with contributions from the protein dynamics in the W122 vicinity. ET probability depends on the orientation of Re(CO)3(dmp) relative to W124 and its rotation diminishes the hopping yield. Comparison with hole hopping in natural systems reveals structural and dynamics factors that are important for designing efficient hole-hopping processes.
- MeSH
- azurin * chemie MeSH
- indoly MeSH
- oxidace-redukce MeSH
- transport elektronů MeSH
- tryptofan chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- azurin * MeSH
- indoly MeSH
- tryptofan MeSH
Hole hopping through tryptophan/tyrosine chains enables rapid unidirectional charge transport over long distances. We have elucidated structural and dynamical factors controlling hopping speed and efficiency in two modified azurin constructs that include a rhenium(I) sensitizer, Re(His)(CO)3(dmp)+, and one or two tryptophans (W1, W2). Experimental kinetics investigations showed that the two closely spaced (3 to 4 Å) intervening tryptophans dramatically accelerated long-range electron transfer (ET) from CuI to the photoexcited sensitizer. In our theoretical work, we found that time-dependent density-functional theory (TDDFT) quantum mechanics/molecular mechanics/molecular dynamics (QM/MM/MD) trajectories of low-lying triplet excited states of ReI(His)(CO)3(dmp)+-W1(-W2) exhibited crossings between sensitizer-localized (*Re) and charge-separated [ReI(His)(CO)3(dmp•-)/(W1•+ or W2•+)] (CS1 or CS2) states. Our analysis revealed that the distances, angles, and mutual orientations of ET-active cofactors fluctuate in a relatively narrow range in which the cofactors are strongly coupled, enabling adiabatic ET. Water-dominated electrostatic field fluctuations bring *Re and CS1 states to a crossing where *Re(CO)3(dmp)+←W1 ET occurs, and CS1 becomes the lowest triplet state. ET is promoted by solvation dynamics around *Re(CO)3(dmp)+(W1); and CS1 is stabilized by Re(dmp•-)/W1•+ electron/hole interaction and enhanced W1•+ solvation. The second hop, W1•+←W2, is facilitated by water fluctuations near the W1/W2 unit, taking place when the electrostatic potential at W2 drops well below that at W1•+ Insufficient solvation and reorganization around W2 make W1•+←W2 ET endergonic, shifting the equilibrium toward W1•+ and decreasing the charge-separation yield. We suggest that multiscale TDDFT/MM/MD is a suitable technique to model the simultaneous evolution of photogenerated excited-state manifolds.
- Klíčová slova
- azurin, electron transfer, hole hopping, molecular dynamics, tryptophan,
- MeSH
- azurin chemie genetika MeSH
- elektrony MeSH
- fotochemie MeSH
- kvantová teorie MeSH
- oxidace-redukce MeSH
- Pseudomonas aeruginosa metabolismus MeSH
- rhenium chemie MeSH
- simulace molekulární dynamiky MeSH
- statická elektřina MeSH
- transport elektronů MeSH
- tryptofan chemie MeSH
- voda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- azurin MeSH
- rhenium MeSH
- tryptofan MeSH
- voda MeSH
We have constructed and structurally characterized a Pseudomonas aeruginosa azurin mutant Re126WWCuI , where two adjacent tryptophan residues (W124 and W122, indole separation 3.6-4.1 Å) are inserted between the CuI center and a Re photosensitizer coordinated to the imidazole of H126 (ReI(H126)(CO)3(4,7-dimethyl-1,10-phenanthroline)+). CuI oxidation by the photoexcited Re label (*Re) 22.9 Å away proceeds with a ∼70 ns time constant, similar to that of a single-tryptophan mutant (∼40 ns) with a 19.4 Å Re-Cu distance. Time-resolved spectroscopy (luminescence, visible and IR absorption) revealed two rapid reversible electron transfer steps, W124 → *Re (400-475 ps, K 1 ≅ 3.5-4) and W122 → W124•+ (7-9 ns, K 2 ≅ 0.55-0.75), followed by a rate-determining (70-90 ns) CuI oxidation by W122•+ ca. 11 Å away. The photocycle is completed by 120 μs recombination. No photochemical CuI oxidation was observed in Re126FWCuI , whereas in Re126WFCuI , the photocycle is restricted to the ReH126W124 unit and CuI remains isolated. QM/MM/MD simulations of Re126WWCuI indicate that indole solvation changes through the hopping process and W124 → *Re electron transfer is accompanied by water fluctuations that tighten W124 solvation. Our finding that multistep tunneling (hopping) confers a ∼9000-fold advantage over single-step tunneling in the double-tryptophan protein supports the proposal that hole-hopping through tryptophan/tyrosine chains protects enzymes from oxidative damage.
- Publikační typ
- časopisecké články MeSH