Nejvíce citovaný článek - PubMed ID 26493315
De novo assembly and sex-specific transcriptome profiling in the sand fly Phlebotomus perniciosus (Diptera, Phlebotominae), a major Old World vector of Leishmania infantum
BACKGROUND: Leishmaniasis is a group of neglected vector-borne diseases transmitted by phlebotomine sand flies. Leishmania parasites must overcome various defenses in the sand fly midgut, including the insects's immune response. Insect immunity is regulated by the ecdysone hormone, which binds to its nuclear receptor (EcR) and activates the transcription of genes involved in insect immunity. However, the role of ecdysone in sand fly immunity has never been studied. Phlebotomus perniciosus is a natural vector of Leishmania infantum; here, we manipulated its neuroendocrine system using azadirachtin (Aza), a natural compound known to affect ecdysone synthesis. METHODS: Phlebotomus perniciosus larvae and adult females were fed on food containing either Aza alone or Aza plus ecdysone, and the effects on mortality and ecdysis were evaluated. Genes related to ecdysone signaling and immunity were identified in P. perniciosus, and the expression of antimicrobial peptides (AMPs), EcR, the ecdysone-induced genes Eip74EF and Eip75B, and the transcription factor serpent were analyzed using quantitative polymerase chain reaction (PCR). RESULTS: Aza treatment inhibited molting of first-instar (L1) larvae to L2, with only 10% of larvae molting compared to 95% in the control group. Serpent and Eip74EF, attacin, defensin 1, and defensin 2 genes were downregulated by Aza treatment in larvae. Similarly, Aza-treated adult females also presented suppression of ecdysone signaling-related genes and the AMPs attacin and defensin 2. Notably, all gene repression caused by Aza was reversed by adding ecdysone concomitantly with Aza to the larval or female food, indicating that these genes are effective markers for ecdysone repression. CONCLUSIONS: These results highlight the critical role of ecdysone in regulating the development and immunity of P. perniciosus, which potentially could interfere with Leishmania infection.
- Klíčová slova
- Phlebotomus perniciosus, Antimicrobial peptides, Azadirachtin, Ecdysone,
- MeSH
- antimikrobiální peptidy genetika farmakologie MeSH
- ekdyson * MeSH
- hmyz - vektory účinky léků genetika parazitologie imunologie MeSH
- hmyzí proteiny genetika metabolismus MeSH
- larva * účinky léků imunologie genetika MeSH
- limoniny * farmakologie MeSH
- Phlebotomus * účinky léků genetika parazitologie imunologie MeSH
- shazování tělního pokryvu účinky léků MeSH
- signální transdukce * účinky léků MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antimikrobiální peptidy MeSH
- azadirachtin MeSH Prohlížeč
- ekdyson * MeSH
- hmyzí proteiny MeSH
- limoniny * MeSH
Toscana virus (TOSV) (Bunyavirales, Phenuiviridae, Phlebovirus, Toscana phlebovirus) and other related human pathogenic arboviruses are transmitted by phlebotomine sand flies. TOSV has been reported in nations bordering the Mediterranean Sea among other regions. Infection can result in febrile illness as well as meningitis and encephalitis. Understanding vector-arbovirus interactions is crucial to improving our knowledge of how arboviruses spread, and in this context, immune responses that control viral replication play a significant role. Extensive research has been conducted on mosquito vector immunity against arboviruses, with RNA interference (RNAi) and specifically the exogenous siRNA (exo-siRNA) pathway playing a critical role. However, the antiviral immunity of phlebotomine sand flies is less well understood. Here we were able to show that the exo-siRNA pathway is active in a Phlebotomus papatasi-derived cell line. Following TOSV infection, distinctive 21 nucleotide virus-derived small interfering RNAs (vsiRNAs) were detected. We also identified the exo-siRNA effector Ago2 in this cell line, and silencing its expression rendered the exo-siRNA pathway largely inactive. Thus, our data show that this pathway is active as an antiviral response against a sand fly transmitted bunyavirus, TOSV.
- MeSH
- arboviry * genetika MeSH
- lidé MeSH
- malá interferující RNA genetika MeSH
- Phlebotomus * genetika MeSH
- Phlebovirus * genetika MeSH
- Psychodidae * genetika MeSH
- RNA interference MeSH
- virus horečky pappataci * genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- malá interferující RNA MeSH
BACKGROUND: Phlebotomine sand flies (Diptera, Nematocera) are important vectors of several pathogens, including Leishmania parasites, causing serious diseases of humans and dogs. Despite their importance as disease vectors, most aspects of sand fly biology remain unknown including the molecular basis of their reproduction and sex determination, aspects also relevant for the development of novel vector control strategies. RESULTS: Using comparative genomics/transcriptomics data mining and transcriptional profiling, we identified the sex determining genes in phlebotomine sand flies and proposed the first model for the sex determination cascade of these insects. For all the genes identified, we produced manually curated gene models, developmental gene expression profile and performed evolutionary molecular analysis. We identified and characterized, for the first time in a Nematocera species, the transformer (tra) homolog which exhibits both conserved and novel features. The analysis of the tra locus in sand flies and its expression pattern suggest that this gene is able to autoregulate its own splicing, as observed in the fruit fly Ceratitis capitata and several other insect species. CONCLUSIONS: Our results permit to fill the gap about sex determination in sand flies, contribute to a better understanding of this developmental pathway in Nematocera and open the way for the identification of sex determining orthologs in other species of this important Diptera sub-order. Furthermore, the sex determination genes identified in our work also provide the opportunity of future biotechnological applications to control natural population of sand flies, reducing their impact on public health.
- Klíčová slova
- Alternative splicing, Genomic data mining, Nematocera, Sand fly, Sex determination, Transformer,
- MeSH
- alternativní sestřih MeSH
- data mining MeSH
- fylogeneze MeSH
- genomika MeSH
- hmyzí proteiny chemie genetika MeSH
- messenger RNA genetika MeSH
- molekulární evoluce * MeSH
- procesy určující pohlaví genetika MeSH
- Psychodidae genetika MeSH
- sekvence aminokyselin MeSH
- selekce (genetika) MeSH
- stanovení celkové genové exprese MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hmyzí proteiny MeSH
- messenger RNA MeSH