Most cited article - PubMed ID 26633989
Combined intervention with pioglitazone and n-3 fatty acids in metformin-treated type 2 diabetic patients: improvement of lipid metabolism
- Keywords
- metabolic flexibility, type 2 diabetes, Δ respiratory exchange ratio,
- Publication type
- Letter MeSH
Metabolic dysfunction-associated steatotic liver disease (MASLD) occurs in subjects with obesity and metabolic syndrome. MASLD may progress from simple steatosis (i.e., hepatic steatosis) to steatohepatitis, characterized by inflammatory changes and liver cell damage, substantially increasing mortality. Lifestyle measures associated with weight loss and/or appropriate diet help reduce liver fat accumulation, thereby potentially limiting progression to steatohepatitis. As for diet, both total energy and macronutrient composition significantly influence the liver's fat content. For example, the type of dietary fatty acids can affect the metabolism of lipids and hence their tissue accumulation, with saturated fatty acids having a greater ability to promote fat storage in the liver than polyunsaturated ones. In particular, polyunsaturated fatty acids of n-3 series (omega-3), such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), have been intensively studied for their antisteatotic effects, both in preclinical animal models of obesity and hepatic steatosis and in overweight/obese patients. Their effects may depend not only on the dose and duration of administration of omega-3, or DHA/EPA ratio, but also on the lipid class used for their supplementation. This review summarizes the available evidence from recent comparative studies using omega-3 supplementation via different lipid classes. Albeit the evidence is mainly limited to preclinical studies, it suggests that phospholipids and possibly wax esters could provide greater efficacy against MASLD compared to traditional chemical forms of omega-3 supplementation (i.e., triacylglycerols, ethyl esters). This cannot be attributed solely to improved EPA and/or DHA bioavailability, but other mechanisms may be involved. Keywords: MASLD • Metabolic dysfunction-associated steatotic liver disease • NAFLD • Non-alcoholic fatty liver disease • n-3 polyunsaturated fatty acids.
- MeSH
- Liver * metabolism drug effects pathology MeSH
- Humans MeSH
- Lipid Metabolism drug effects MeSH
- Non-alcoholic Fatty Liver Disease metabolism drug therapy diet therapy pathology MeSH
- Obesity metabolism drug therapy diet therapy pathology MeSH
- Fatty Acids, Omega-3 * administration & dosage metabolism therapeutic use MeSH
- Dietary Supplements * MeSH
- Fatty Liver metabolism drug therapy MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Fatty Acids, Omega-3 * MeSH
Long-chain n-3 polyunsaturated fatty acids (Omega-3) and anti-diabetic drugs thiazolidinediones (TZDs) exhibit additive effects in counteraction of dietary obesity and associated metabolic dysfunctions in mice. The underlying mechanisms need to be clarified. Here, we aimed to learn whether the futile cycle based on the hydrolysis of triacylglycerol and re-esterification of fatty acids (TAG/FA cycling) in white adipose tissue (WAT) could be involved. We compared Omega-3 (30 mg/g diet) and two different TZDs-pioglitazone (50 mg/g diet) and a second-generation TZD, MSDC-0602K (330 mg/g diet)-regarding their effects in C57BL/6N mice fed an obesogenic high-fat (HF) diet for 8 weeks. The diet was supplemented or not by the tested compound alone or with the two TZDs combined individually with Omega-3. Activity of TAG/FA cycle in WAT was suppressed by the obesogenic HF diet. Additive effects in partial rescue of TAG/FA cycling in WAT were observed with both combined interventions, with a stronger effect of Omega-3 and MSDC-0602K. Our results (i) supported the role of TAG/FA cycling in WAT in the beneficial additive effects of Omega-3 and TZDs on metabolism of diet-induced obese mice, and (ii) showed differential modulation of WAT gene expression and metabolism by the two TZDs, depending also on Omega-3.
- Keywords
- adipocytes, glucose homeostasis, insulin, lipogenesis, obesity,
- MeSH
- Adipose Tissue, White metabolism MeSH
- Diet, High-Fat MeSH
- Hypoglycemic Agents pharmacology MeSH
- Lipogenesis drug effects MeSH
- Fatty Acids metabolism MeSH
- Lipid Metabolism drug effects MeSH
- Mice, Inbred C57BL MeSH
- Mice, Obese MeSH
- Mice MeSH
- Obesity drug therapy metabolism MeSH
- Fatty Acids, Omega-3 administration & dosage pharmacology MeSH
- Pioglitazone pharmacology MeSH
- Thiazolidinediones administration & dosage pharmacology MeSH
- Triglycerides metabolism MeSH
- Adipocytes drug effects MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Hypoglycemic Agents MeSH
- Fatty Acids MeSH
- Fatty Acids, Omega-3 MeSH
- Pioglitazone MeSH
- Thiazolidinediones MeSH
- Triglycerides MeSH