Most cited article - PubMed ID 26659272
The definitions of three-dimensional landmarks on the human face: an interdisciplinary view
As understanding of the genetics of bipolar disorder increases, controversy endures regarding whether the origins of this illness include early maldevelopment. Clarification would be facilitated by a 'hard' biological index of fetal developmental abnormality, among which craniofacial dysmorphology bears the closest embryological relationship to brain dysmorphogenesis. Therefore, 3D laser surface imaging was used to capture the facial surface of 21 patients with bipolar disorder and 45 control subjects; 21 patients with schizophrenia were also studied. Surface images were subjected to geometric morphometric analysis in non-affine space for more incisive resolution of subtle, localised dysmorphologies that might distinguish patients from controls. Complex and more biologically informative, non-linear changes distinguished bipolar patients from control subjects. On a background of minor dysmorphology of the upper face, maxilla, midface and periorbital regions, bipolar disorder was characterised primarily by the following dysmorphologies: (a) retrusion and shortening of the premaxilla, nose, philtrum, lips and mouth (the frontonasal prominences), with (b) some protrusion and widening of the mandible-chin. The topography of facial dysmorphology in bipolar disorder indicates disruption to early development in the frontonasal process and, on embryological grounds, cerebral dysmorphogenesis in the forebrain, most likely between the 10th and 15th week of fetal life.
- Keywords
- Bipolar disorder, Brain dysmorphogenesis, Craniofacial dysmorphology, Geometric morphometrics, Neurodevelopment,
- MeSH
- Principal Component Analysis MeSH
- Bipolar Disorder complications diagnostic imaging MeSH
- Adult MeSH
- Craniofacial Abnormalities complications diagnostic imaging MeSH
- Humans MeSH
- Young Adult MeSH
- Brain diagnostic imaging MeSH
- Face diagnostic imaging MeSH
- Schizophrenia diagnostic imaging MeSH
- Imaging, Three-Dimensional methods MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
One of the data structures generated by medical imaging technology is high resolution point clouds representing anatomical surfaces. Stereophotogrammetry and laser scanning are two widely available sources of this kind of data. A standardised surface representation is required to provide a meaningful correspondence across different images as a basis for statistical analysis. Point locations with anatomical definitions, referred to as landmarks, have been the traditional approach. Landmarks can also be taken as the starting point for more general surface representations, often using templates which are warped on to an observed surface by matching landmark positions and subsequent local adjustment of the surface. The aim of the present paper is to provide a new approach which places anatomical curves at the heart of the surface representation and its analysis. Curves provide intermediate structures which capture the principal features of the manifold (surface) of interest through its ridges and valleys. As landmarks are often available these are used as anchoring points, but surface curvature information is the principal guide in estimating the curve locations. The surface patches between these curves are relatively flat and can be represented in a standardised manner by appropriate surface transects to give a complete surface model. This new approach does not require the use of a template, reference sample or any external information to guide the method and, when compared with a surface based approach, the estimation of curves is shown to have improved performance. In addition, examples involving applications to mussel shells and human faces show that the analysis of curve information can deliver more targeted and effective insight than the use of full surface information.
- Keywords
- Anatomy, curves, manifold, p-splines, shape analysis, smoothing, three dimensional,
- Publication type
- Journal Article MeSH
PURPOSE OF REVIEW: In the context of human developmental conditions, we review the conceptualisation of schizophrenia as a neurodevelopmental disorder, the status of craniofacial dysmorphology as a clinically accessible index of brain dysmorphogenesis, the ability of genetically modified mouse models of craniofacial dysmorphology to inform on the underlying dysmorphogenic process and how geometric morphometric techniques in mutant mice can extend quantitative analysis. RECENT FINDINGS: Mutant mice with disruption of neuregulin-1, a gene associated meta-analytically with risk for schizophrenia, constitute proof-of-concept studies of murine facial dysmorphology in a manner analogous to clinical studies in schizophrenia. Geometric morphometric techniques informed on the topography of facial dysmorphology and identified asymmetry therein. SUMMARY: Targeted disruption in mice of genes involved in individual components of developmental processes and analysis of resultant facial dysmorphology using geometric morphometrics can inform on mechanisms of dysmorphogenesis at levels of incisiveness not possible in human subjects.
- Keywords
- 3D facial imaging, Asymmetry, Craniofacial dysmorphology, Geometric morphometrics, Mouse models, Neurodevelopmental disorders, Schizophrenia,
- Publication type
- Journal Article MeSH
- Review MeSH