Most cited article - PubMed ID 26690793
Biodegradable polydioxanone stents in the treatment of adult patients with tracheal narrowing
BACKGROUND: Biodegradable (BD) stents made from polydioxanone have been used only in human airways. These stents combine the advantages of classical tracheal stents, and fewer side effects are expected due to their biocompatibility and their time-limited presence in airways. However, new clinical consequences have arisen. Here, the authors share their experiences with BD stents for tracheal indications, focusing on their safety and efficacy. METHODS: This was a retrospective review of a collected database of adult patients who underwent implantation of biodegradable tracheal stents between September 2013 and December 2022 at the Department of Respiratory Medicine of the 1st Faculty of Medicine in Prague and Thomayer University Hospital. The indications included functionally significant nonmalignant tracheal stenosis and tracheomalacia. Self-expandable, biodegradable, polydioxanone tracheal stents manufactured by ELLA-CS Ltd. (Hradec Kralove, Czech Republic) were implanted during rigid bronchoscopy under general anaesthesia. All patients were followed up in the department and were provided with the necessary care. The main efficacy and safety parameters and relationships were analysed using descriptive statistics and Fisher´s exact, Wilcoxon and Kruskal‒Wallis tests. RESULTS: A total of 65 stents were implanted in 47 adult patients. During the first two months after implantation, when adequate function was expected, the stent was found to be effective in 26 out of 39 patients who completed this period (66.7%). The clinical effectiveness reached 89.7%, as early restenoses were mostly mild and necessitated treatment in only 4 patients. The frequencies of significant mucostasis, migration and granulation tissue growth were 2.6%, 7.5% and 23.1%, respectively, during this period. Thirty-four participants completed the half-year follow-up period after the first or second stent insertion, and some were followed up beyond this period. Poor control of symptoms, the development of restenosis and the need for interventions were characteristic of this period as the stents degraded. Twenty-two patients who experienced remodelling or stabilization of the tracheal lumen achieved a stent-free state. Seven patients underwent subsequent surgical treatment. CONCLUSIONS: BD stents are safe and provide adequate tracheal support until they begin to degrade. The use of BD stents necessitates close monitoring of patients and accurate treatment of possible restenosis. TRIAL REGISTRATION: Based on project NT14146 - Biodegradable stents in the management of the large airways (2013-2015, MZ0/NT), registered on May 1, 2013, in the Research and Development and Innovation Information System of the Czech Republic and at ClinicalTrials.gov (reg. no. NCT02620319, December 2, 2015).
- Keywords
- Biodegradable, Bronchoscopy, Interventional pneumology, Polydioxanone, Stents, Tracheal stenosis,
- MeSH
- Bronchoscopy * MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Polydioxanone MeSH
- Prosthesis Design MeSH
- Retrospective Studies MeSH
- Aged MeSH
- Tracheal Stenosis * surgery MeSH
- Stents * MeSH
- Trachea surgery MeSH
- Tracheomalacia surgery MeSH
- Absorbable Implants * MeSH
- Treatment Outcome MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
Biodegradable biliary stents are promising treatments for biliary benign stenoses. One of the materials considered for their production is polydioxanone (PPDX), which could exhibit a suitable degradation time for use in biodegradable stents. Proper material degradation characteristics, such as sufficient stiffness and disintegration resistance maintained for a clinically relevant period, are necessary to ensure stent safety and efficacy. The hydrolytic degradation of commercially available polydioxanone biliary stents (ELLA-CS, Hradec Králové, Czech Republic) in phosphate-buffered saline (PBS) was studied. During 9 weeks of degradation, structural, physical, and surface changes were monitored using Raman spectroscopy, differential scanning calorimetry, scanning electron microscopy, and tensile and torsion tests. It was found that the changes in mechanical properties are related to the increase in the ratio of amorphous to crystalline phase, the so-called amorphicity. Monitoring the amorphicity using Raman spectroscopy has proven to be an appropriate method to assess polydioxanone biliary stent degradation. At the 1732 cm-1 Raman peak, the normalized shoulder area is less than 9 cm-1 which indicates stent disintegration. The stent disintegration started after 9 weeks of degradation in PBS, which agrees with previous in vitro studies on polydioxanone materials as well as with in vivo studies on polydioxanone biliary stents.
- Keywords
- Raman spectroscopy, Young’s modulus, biliary stent, degradation, differential scanning calorimetry, polydioxanone, tensile strength,
- Publication type
- Journal Article MeSH