Nejvíce citovaný článek - PubMed ID 26728401
Myristoylation drives dimerization of matrix protein from mouse mammary tumor virus
Retroviral Gag polyproteins are targeted to the inner leaflet of the plasma membrane through their N-terminal matrix (MA) domain. Because retroviruses of different morphogenetic types assemble their immature particles in distinct regions of the host cell, the mechanism of MA-mediated plasma membrane targeting differs among distinct retroviral morphogenetic types. Here, we focused on possible mechanistic differences of the MA-mediated plasma membrane targeting of the B-type mouse mammary tumor virus (MMTV) and C-type HIV-1, which assemble in the cytoplasm and at the plasma membrane, respectively. Molecular dynamics simulations, together with surface mapping, indicated that, similarly to HIV-1, MMTV uses a myristic switch to anchor the MA to the membrane and electrostatically interacts with phosphatidylinositol 4,5-bisphosphate to stabilize MA orientation. We observed that the affinity of MMTV MA to the membrane is lower than that of HIV-1 MA, possibly related to their different topologies and the number of basic residues in the highly basic MA region. The latter probably reflects the requirement of C-type retroviruses for tighter membrane binding, essential for assembly, unlike for D/B-type retroviruses, which assemble in the cytoplasm. A comparison of the membrane topology of the HIV-1 MA, using the surface-mapping method and molecular dynamics simulations, revealed that the residues at the HIV-1 MA C terminus help stabilize protein-protein interactions within the HIV-1 MA lattice at the plasma membrane. In summary, HIV-1 and MMTV share common features such as membrane binding of the MA via hydrophobic interactions and exhibit several differences, including lower membrane affinity of MMTV MA.
- Klíčová slova
- Gag polyprotein, HIV-1, coarse-grained molecular dynamics, covalent labeling–mass spectrometry, human immunodeficiency virus (HIV), lipid–protein interaction, mass spectrometry (MS), matrix protein, membrane binding, molecular dynamics, mouse mammary tumor virus (MMTV), particle assembly, retrovirus, viral replication,
- MeSH
- buněčná membrána metabolismus patologie MeSH
- HIV infekce metabolismus patologie MeSH
- HIV-1 fyziologie MeSH
- infekce onkogenními viry metabolismus patologie MeSH
- interakce hostitele a patogenu MeSH
- lidé MeSH
- molekulární modely MeSH
- myši MeSH
- retrovirové infekce metabolismus patologie MeSH
- sestavení viru MeSH
- virus myšího tumoru prsní žlázy fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH