Nejvíce citovaný článek - PubMed ID 10364290
Retroviral Gag polyproteins are targeted to the inner leaflet of the plasma membrane through their N-terminal matrix (MA) domain. Because retroviruses of different morphogenetic types assemble their immature particles in distinct regions of the host cell, the mechanism of MA-mediated plasma membrane targeting differs among distinct retroviral morphogenetic types. Here, we focused on possible mechanistic differences of the MA-mediated plasma membrane targeting of the B-type mouse mammary tumor virus (MMTV) and C-type HIV-1, which assemble in the cytoplasm and at the plasma membrane, respectively. Molecular dynamics simulations, together with surface mapping, indicated that, similarly to HIV-1, MMTV uses a myristic switch to anchor the MA to the membrane and electrostatically interacts with phosphatidylinositol 4,5-bisphosphate to stabilize MA orientation. We observed that the affinity of MMTV MA to the membrane is lower than that of HIV-1 MA, possibly related to their different topologies and the number of basic residues in the highly basic MA region. The latter probably reflects the requirement of C-type retroviruses for tighter membrane binding, essential for assembly, unlike for D/B-type retroviruses, which assemble in the cytoplasm. A comparison of the membrane topology of the HIV-1 MA, using the surface-mapping method and molecular dynamics simulations, revealed that the residues at the HIV-1 MA C terminus help stabilize protein-protein interactions within the HIV-1 MA lattice at the plasma membrane. In summary, HIV-1 and MMTV share common features such as membrane binding of the MA via hydrophobic interactions and exhibit several differences, including lower membrane affinity of MMTV MA.
- Klíčová slova
- Gag polyprotein, HIV-1, coarse-grained molecular dynamics, covalent labeling–mass spectrometry, human immunodeficiency virus (HIV), lipid–protein interaction, mass spectrometry (MS), matrix protein, membrane binding, molecular dynamics, mouse mammary tumor virus (MMTV), particle assembly, retrovirus, viral replication,
- MeSH
- buněčná membrána metabolismus patologie MeSH
- HIV infekce metabolismus patologie MeSH
- HIV-1 fyziologie MeSH
- infekce onkogenními viry metabolismus patologie MeSH
- interakce hostitele a patogenu MeSH
- lidé MeSH
- molekulární modely MeSH
- myši MeSH
- retrovirové infekce metabolismus patologie MeSH
- sestavení viru MeSH
- virus myšího tumoru prsní žlázy fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In addition to specific RNA-binding zinc finger domains, the retroviral Gag polyprotein contains clusters of basic amino acid residues that are thought to support Gag-viral genomic RNA (gRNA) interactions. One of these clusters is the basic K16NK18EK20 region, located upstream of the first zinc finger of the Mason-Pfizer monkey virus (M-PMV) nucleocapsid (NC) protein. To investigate the role of this basic region in the M-PMV life cycle, we used a combination of in vivo and in vitro methods to study a series of mutants in which the overall charge of this region was more positive (RNRER), more negative (AEAEA), or neutral (AAAAA). The mutations markedly affected gRNA incorporation and the onset of reverse transcription. The introduction of a more negative charge (AEAEA) significantly reduced the incorporation of M-PMV gRNA into nascent particles. Moreover, the assembly of immature particles of the AEAEA Gag mutant was relocated from the perinuclear region to the plasma membrane. In contrast, an enhancement of the basicity of this region of M-PMV NC (RNRER) caused a substantially more efficient incorporation of gRNA, subsequently resulting in an increase in M-PMV RNRER infectivity. Nevertheless, despite the larger amount of gRNA packaged by the RNRER mutant, the onset of reverse transcription was delayed in comparison to that of the wild type. Our data clearly show the requirement for certain positively charged amino acid residues upstream of the first zinc finger for proper gRNA incorporation, assembly of immature particles, and proceeding of reverse transcription.IMPORTANCE We identified a short sequence within the Gag polyprotein that, together with the zinc finger domains and the previously identified RKK motif, contributes to the packaging of genomic RNA (gRNA) of Mason-Pfizer monkey virus (M-PMV). Importantly, in addition to gRNA incorporation, this basic region (KNKEK) at the N terminus of the nucleocapsid protein is crucial for the onset of reverse transcription. Mutations that change the positive charge of the region to a negative one significantly reduced specific gRNA packaging. The assembly of immature particles of this mutant was reoriented from the perinuclear region to the plasma membrane. On the contrary, an enhancement of the basic character of this region increased both the efficiency of gRNA packaging and the infectivity of the virus. However, the onset of reverse transcription was delayed even in this mutant. In summary, the basic region in M-PMV Gag plays a key role in the packaging of genomic RNA and, consequently, in assembly and reverse transcription.
- Klíčová slova
- M-PMV, RNA packaging, assembly, basic residues, human immunodeficiency virus, infectivity, nucleocapsid, retroviruses, reverse transcription,
- MeSH
- buněčné linie MeSH
- genové produkty gag genetika MeSH
- HEK293 buňky MeSH
- lidé MeSH
- Masonův-Pfizerův opičí virus genetika fyziologie MeSH
- mutace genetika MeSH
- nukleokapsida - proteiny genetika MeSH
- reverzní transkripce genetika MeSH
- RNA virová genetika MeSH
- sekvence aminokyselin genetika MeSH
- sestavení viru genetika MeSH
- zinkové prsty genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- genové produkty gag MeSH
- nukleokapsida - proteiny MeSH
- RNA virová MeSH
UNLABELLED: The Gag polyprotein of retroviruses drives immature virus assembly by forming hexameric protein lattices. The assembly is primarily mediated by protein-protein interactions between capsid (CA) domains and by interactions between nucleocapsid (NC) domains and RNA. Specific interactions between NC and the viral RNA are required for genome packaging. Previously reported cryoelectron microscopy analysis of immature Mason-Pfizer monkey virus (M-PMV) particles suggested that a basic region (residues RKK) in CA may serve as an additional binding site for nucleic acids. Here, we have introduced mutations into the RKK region in both bacterial and proviral M-PMV vectors and have assessed their impact on M-PMV assembly, structure, RNA binding, budding/release, nuclear trafficking, and infectivity using in vitro and in vivo systems. Our data indicate that the RKK region binds and structures nucleic acid that serves to promote virus particle assembly in the cytoplasm. Moreover, the RKK region appears to be important for recruitment of viral genomic RNA into Gag particles, and this function could be linked to changes in nuclear trafficking. Together these observations suggest that in M-PMV, direct interactions between CA and nucleic acid play important functions in the late stages of the viral life cycle. IMPORTANCE: Assembly of retrovirus particles is driven by the Gag polyprotein, which can self-assemble to form virus particles and interact with RNA to recruit the viral genome into the particles. Generally, the capsid domains of Gag contribute to essential protein-protein interactions during assembly, while the nucleocapsid domain interacts with RNA. The interactions between the nucleocapsid domain and RNA are important both for identifying the genome and for self-assembly of Gag molecules. Here, we show that a region of basic residues in the capsid protein of the betaretrovirus Mason-Pfizer monkey virus (M-PMV) contributes to interaction of Gag with nucleic acid. This interaction appears to provide a critical scaffolding function that promotes assembly of virus particles in the cytoplasm. It is also crucial for packaging the viral genome and thus for infectivity. These data indicate that, surprisingly, interactions between the capsid domain and RNA play an important role in the assembly of M-PMV.
- MeSH
- buněčné linie MeSH
- elektronová kryomikroskopie MeSH
- genom virový * MeSH
- genové produkty gag MeSH
- lidé MeSH
- Masonův-Pfizerův opičí virus fyziologie ultrastruktura MeSH
- mutace MeSH
- rekombinantní proteiny MeSH
- RNA virová metabolismus MeSH
- sekvence aminokyselin MeSH
- sestavení viru * genetika MeSH
- substituce aminokyselin MeSH
- transport proteinů MeSH
- vazba proteinů MeSH
- virové plášťové proteiny genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- genové produkty gag MeSH
- rekombinantní proteiny MeSH
- RNA virová MeSH
- virové plášťové proteiny MeSH
The intracellular transport of Mason-Pfizer monkey virus (M-PMV) assembled capsids from the pericentriolar region to the plasma membrane (PM) requires trafficking of envelope glycoprotein (Env) to the assembly site via the recycling endosome. However, it is unclear if Env-containing vesicles play a direct role in trafficking capsids to the PM. Using live cell microscopy, we demonstrate, for the first time, anterograde co-transport of Gag and Env. Nocodazole disruption of microtubules had differential effects on Gag and Env trafficking, with pulse-chase assays showing a delayed release of Env-deficient virions. Particle tracking demonstrated an initial loss of linear movement of GFP-tagged capsids and mCherry-tagged Env, followed by renewed movement of Gag but not Env at 4h post-treatment. Thus, while delayed capsid trafficking can occur in the absence of microtubules, efficient anterograde transport of capsids appears to be mediated by microtubule-associated Env-containing vesicles.
- Klíčová slova
- Anterograde transport, Cytoskeleton, Envelope, Gag, Live cell-imaging, M-PMV,
- MeSH
- AIDS opičí metabolismus virologie MeSH
- buněčná membrána virologie MeSH
- Cercopithecus aethiops MeSH
- genové produkty env genetika metabolismus MeSH
- genové produkty gag genetika metabolismus MeSH
- Macaca mulatta MeSH
- Masonův-Pfizerův opičí virus genetika metabolismus MeSH
- mikrotubuly metabolismus virologie MeSH
- transport proteinů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- genové produkty env MeSH
- genové produkty gag MeSH
Immature capsids of the Betaretrovirus, Mason-Pfizer Monkey virus (M-PMV), are assembled in the pericentriolar region of the cell, and are then transported to the plasma membrane for budding. Although several studies, utilizing mutagenesis, biochemistry, and immunofluorescence, have defined the role of some viral and host cells factors involved in these processes, they have the disadvantage of population analysis, rather than analyzing individual capsid movement in real time. In this study, we created an M-PMV vector in which the enhanced green fluorescent protein, eGFP, was fused to the carboxyl-terminus of the M-PMV Gag polyprotein, to create a Gag-GFP fusion that could be visualized in live cells. In order to express this fusion protein in the context of an M-PMV proviral backbone, it was necessary to codon-optimize gag, optimize the Kozak sequence preceding the initiating methionine, and mutate an internal methionine codon to one for alanine (M100A) to prevent internal initiation of translation. Co-expression of this pSARM-Gag-GFP-M100A vector with a WT M-PMV provirus resulted in efficient assembly and release of capsids. Results from fixed-cell immunofluorescence and pulse-chase analyses of wild type and mutant Gag-GFP constructs demonstrated comparable intracellular localization and release of capsids to untagged counterparts. Real-time, live-cell visualization and analysis of the GFP-tagged capsids provided strong evidence for a role for microtubules in the intracellular transport of M-PMV capsids. Thus, this M-PMV Gag-GFP vector is a useful tool for identifying novel virus-cell interactions involved in intracellular M-PMV capsid transport in a dynamic, real-time system.
- MeSH
- biologický transport MeSH
- buněčná membrána metabolismus MeSH
- fluorescenční barviva metabolismus MeSH
- genetické vektory genetika MeSH
- genové produkty gag genetika metabolismus MeSH
- HEK293 buňky MeSH
- kapsida metabolismus MeSH
- kinetika MeSH
- lidé MeSH
- Masonův-Pfizerův opičí virus genetika metabolismus fyziologie MeSH
- mikrotubuly metabolismus virologie MeSH
- molekulární zobrazování MeSH
- pohyb MeSH
- proviry genetika metabolismus fyziologie MeSH
- rekombinantní fúzní proteiny genetika metabolismus MeSH
- sestavení viru MeSH
- transport proteinů MeSH
- viabilita buněk MeSH
- zelené fluorescenční proteiny genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- fluorescenční barviva MeSH
- genové produkty gag MeSH
- rekombinantní fúzní proteiny MeSH
- zelené fluorescenční proteiny MeSH
Most retroviruses employ a frameshift mechanism during polyprotein synthesis to balance appropriate ratios of structural proteins and enzymes. To investigate the requirements for individual precursors in retrovirus assembly, we modified the polyprotein repertoire of Mason-Pfizer monkey virus (M-PMV) by mutating the frameshift sites to imitate the polyprotein organization of Rous sarcoma virus (Gag-Pro and Gag-Pro-Pol) or Human immunodeficiency virus (Gag and Gag-Pro-Pol). For the "Rous-like" virus, assembly was impaired with no incorporation of Gag-Pro-Pol into particles and for the "HIV-like" virus an altered morphogenesis was observed. A mutant expressing Gag and Gag-Pro polyproteins and lacking Gag-Pro-Pol assembled intracellular particles at a level similar to the wild-type. Gag-Pro-Pol polyprotein alone neither formed immature particles nor processed the precursor. All the mutants were non-infectious except the "HIV-like", which retained fractional infectivity.
- MeSH
- AIDS opičí virologie MeSH
- Cercopithecus aethiops MeSH
- COS buňky MeSH
- genové produkty gag genetika MeSH
- genové produkty pol genetika MeSH
- lidé MeSH
- Masonův-Pfizerův opičí virus genetika patogenita MeSH
- messenger RNA genetika MeSH
- posunová mutace MeSH
- proteosyntéza MeSH
- RNA virová genetika MeSH
- transfekce MeSH
- virion genetika patogenita MeSH
- virové proteiny genetika MeSH
- virus Rousova sarkomu genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- genové produkty gag MeSH
- genové produkty pol MeSH
- messenger RNA MeSH
- RNA virová MeSH
- virové proteiny MeSH
Despite extensive data demonstrating that immature retroviral particle assembly can take place either at the plasma membrane or at a distinct location within the cytoplasm, targeting of viral precursor proteins to either assembly site still remains poorly understood. Biochemical data presented here suggest that Tctex-1, a light chain of the molecular motor dynein, is involved in the intracellular targeting of Mason-Pfizer monkey virus (M-PMV) polyproteins to the cytoplasmic assembly site. Comparison of the three-dimensional structures of M-PMV wild-type matrix protein (wt MA) with a single amino acid mutant (R55F), which redirects assembly from a cytoplasmic site to the plasma membrane, revealed different mutual orientations of their C- and N-terminal domains. This conformational change buries a putative intracellular targeting motif located between both domains in the hydrophobic pocket of the MA molecule, thereby preventing the interaction with cellular transport mechanisms.
- MeSH
- biologické modely MeSH
- biologický transport MeSH
- buněčná membrána metabolismus virologie MeSH
- Cercopithecus aethiops MeSH
- COS buňky MeSH
- cytoplazma metabolismus MeSH
- dyneiny metabolismus MeSH
- fenotyp MeSH
- genomová oblast t-komplexu MeSH
- jaderné proteiny chemie metabolismus fyziologie MeSH
- lidé MeSH
- Masonův-Pfizerův opičí virus metabolismus MeSH
- mutace MeSH
- proteiny asociované s mikrotubuly chemie metabolismus fyziologie MeSH
- Retroviridae metabolismus MeSH
- terciární struktura proteinů MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dyneiny MeSH
- jaderné proteiny MeSH
- proteiny asociované s mikrotubuly MeSH
Mason-Pfizer monkey virus (M-PMV) Gag protein contains a domain p12 that is unique to this virus (simian retrovirus-3) and its close relatives. The alpha-helical N-terminal half of p12, which contains a leucine zipper-like region, forms ordered structures in E. coli and the C-terminal half can form SDS-resistant oligomers in vitro. Together these properties suggest that p12 is a strong protein-protein interaction domain that facilitates Gag-Gag oligomerization. We have analyzed the oligomerization potential of a panel of p12 mutants, including versions containing substituted dimer, trimer, and tetramer leucine zippers, expressed in bacteria and in the context of the Gag precursor expressed in vitro and in cells. Purified recombinant p12 and its mutants could form various oligomers as shown by chemical cross-linking experiments. Within Gag these same mutants could assemble when overexpressed in cells. In contrast, all the mutants, including the leucine zipper mutants, were assembly defective in a cell-free system. These data highlight the importance of a region containing alternating leucines and isoleucines within p12, but also indicate that this domain's scaffold-like function is more complex than small number oligomerization.
- MeSH
- Cercopithecus aethiops MeSH
- COS buňky MeSH
- genové produkty gag genetika metabolismus MeSH
- leucinové zipy MeSH
- Masonův-Pfizerův opičí virus genetika fyziologie ultrastruktura MeSH
- molekulární sekvence - údaje MeSH
- mutace MeSH
- rekombinantní proteiny genetika izolace a purifikace metabolismus MeSH
- terciární struktura proteinů MeSH
- transmisní elektronová mikroskopie MeSH
- vazba proteinů MeSH
- virion ultrastruktura MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- genové produkty gag MeSH
- p12 protein, Mason-Pfizer monkey virus MeSH Prohlížeč
- rekombinantní proteiny MeSH
Mason-Pfizer monkey virus (M-PMV) preassembles immature capsids in the cytoplasm prior to transporting them to the plasma membrane. Expression of the M-PMV Gag precursor in bacteria results in the assembly of capsids indistinguishable from those assembled in mammalian cells. We have used this system to investigate the structural requirements for the assembly of Gag precursors into procapsids. A series of C- and N-terminal deletion mutants progressively lacking each of the mature Gag domains (matrix protein [MA]-pp24/16-p12-capsid protein [CA]-nucleocapsid protein [NC]-p4) were constructed and expressed in bacteria. The results demonstrate that both the CA and the NC domains are necessary for the assembly of macromolecular arrays (sheets) but that amino acid residues at the N terminus of CA define the assembly of spherical capsids. The role of these N-terminal domains is not based on a specific amino acid sequence, since both MA-CA-NC and p12-CA-NC polyproteins efficiently assemble into capsids. Residues N terminal of CA appear to prevent a conformational change in which the N-terminal proline plays a key role, since the expression of a CA-NC protein lacking this proline results in the assembly of spherical capsids in place of the sheets assembled by the CA-NC protein.
- MeSH
- aminokyseliny analýza MeSH
- elektronová mikroskopie MeSH
- Escherichia coli genetika MeSH
- genové produkty gag chemie genetika metabolismus MeSH
- kapsida chemie metabolismus ultrastruktura MeSH
- Masonův-Pfizerův opičí virus metabolismus fyziologie ultrastruktura MeSH
- mutageneze cílená MeSH
- prolin chemie metabolismus MeSH
- sekvenční delece MeSH
- sestavení viru fyziologie MeSH
- terciární struktura proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
- Názvy látek
- aminokyseliny MeSH
- genové produkty gag MeSH
- prolin MeSH