Most cited article - PubMed ID 26929198
New Regulatory Roles of Galectin-3 in High-Affinity IgE Receptor Signaling
Signal transduction by the high-affinity IgE receptor (FcεRI) depends on membrane lipid and protein compartmentalization. Recently published data show that cells treated with 1-heptanol, a cell membrane fluidizer, exhibit changes in membrane properties. However, the functional consequences of 1-heptanol-induced changes on mast cell signaling are unknown. This study shows that short-term exposure to 1-heptanol reduces membrane thermal stability and dysregulates mast cell signaling at multiple levels. Cells treated with 1-heptanol exhibited increased lateral mobility and decreased internalization of the FcεRI. However, this did not affect the initial phosphorylation of the FcεRI-β chain and components of the SYK/LAT1/PLCγ1 signaling pathway after antigen activation. In contrast, 1-heptanol inhibited SAPK/JNK phosphorylation and effector functions such as calcium response, degranulation, and cytokine production. Membrane hyperfluidization induced a heat shock-like response via increased expression of the heat shock protein 70, increased lateral diffusion of ORAI1-mCherry, and unsatisfactory performance of STIM1-ORAI1 coupling, as determined by flow-FRET. Furthermore, 1-heptanol inhibited the antigen-induced production of reactive oxygen species and potentiated stress-induced plasma membrane permeability by interfering with heat shock protein 70 activity. The combined data suggest that 1-heptanol-mediated membrane fluidization does not interfere with the earliest biochemical steps of FcεRI signaling, such as phosphorylation of the FcεRI-β chain and components of the SYK/LAT/PLCγ1 signaling pathway, instead inhibiting the FcεRI internalization and mast cell effector functions, including degranulation and cytokine production.
- Keywords
- FRAP, FcεRI signaling, STIM1-ORAI1 coupling, alkanol, flow-FRET, heat shock response, membrane fluidizer, store-operated calcium entry,
- MeSH
- Cholesterol MeSH
- Cytokines MeSH
- Heptanol MeSH
- Mast Cells * MeSH
- Signal Transduction * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Cholesterol MeSH
- Cytokines MeSH
- Heptanol MeSH
Leukotrienes (LTs) and sphingolipids are critical lipid mediators participating in numerous cellular signal transduction events and developing various disorders, such as bronchial hyperactivity leading to asthma. Enzymatic reactions initiating production of these lipid mediators involve 5-lipoxygenase (5-LO)-mediated conversion of arachidonic acid to LTs and serine palmitoyltransferase (SPT)-mediated de novo synthesis of sphingolipids. Previous studies have shown that endoplasmic reticulum membrane protein ORM1-like protein 3 (ORMDL3) inhibits the activity of SPT and subsequent sphingolipid synthesis. However, the role of ORMDL3 in the synthesis of LTs is not known. In this study, we used peritoneal-derived mast cells isolated from ORMDL3 KO or control mice and examined their calcium mobilization, degranulation, NF-κB inhibitor-α phosphorylation, and TNF-α production. We found that peritoneal-derived mast cells with ORMDL3 KO exhibited increased responsiveness to antigen. Detailed lipid analysis showed that compared with WT cells, ORMDL3-deficient cells exhibited not only enhanced production of sphingolipids but also of LT signaling mediators LTB4, 6t-LTB4, LTC4, LTB5, and 6t-LTB5. The crosstalk between ORMDL3 and 5-LO metabolic pathways was supported by the finding that endogenous ORMDL3 and 5-LO are localized in similar endoplasmic reticulum domains in human mast cells and that ORMDL3 physically interacts with 5-LO. Further experiments showed that 5-LO also interacts with the long-chain 1 and long-chain 2 subunits of SPT. In agreement with these findings, 5-LO knockdown increased ceramide levels, and silencing of SPTLC1 decreased arachidonic acid metabolism to LTs to levels observed upon 5-LO knockdown. These results demonstrate functional crosstalk between the LT and sphingolipid metabolic pathways, leading to the production of lipid signaling mediators.
- Keywords
- ER membrane domains, HPLC, immunology, inflammation, leukotrienes, lipid mass spectrometry, peritoneal-derived mast cells, signal transduction, sphingolipids,
- MeSH
- Arachidonate 5-Lipoxygenase metabolism MeSH
- Eicosanoids analysis metabolism MeSH
- Membrane Proteins metabolism MeSH
- Mice, Inbred C57BL MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Serine C-Palmitoyltransferase metabolism MeSH
- Sphingolipids analysis metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Arachidonate 5-Lipoxygenase MeSH
- Eicosanoids MeSH
- Membrane Proteins MeSH
- ORMDL3 protein, mouse MeSH Browser
- Serine C-Palmitoyltransferase MeSH
- Sphingolipids MeSH
C-terminal Src kinase (CSK) is a major negative regulator of Src family tyrosine kinases (SFKs) that play critical roles in immunoreceptor signaling. CSK is brought in contiguity to the plasma membrane-bound SFKs via binding to transmembrane adaptor PAG, also known as CSK-binding protein. The recent finding that PAG can function as a positive regulator of the high-affinity IgE receptor (FcεRI)-mediated mast cell signaling suggested that PAG and CSK have some non-overlapping regulatory functions in mast cell activation. To determine the regulatory roles of CSK in FcεRI signaling, we derived bone marrow-derived mast cells (BMMCs) with reduced or enhanced expression of CSK from wild-type (WT) or PAG knockout (KO) mice and analyzed their FcεRI-mediated activation events. We found that in contrast to PAG-KO cells, antigen-activated BMMCs with CSK knockdown (KD) exhibited significantly higher degranulation, calcium response, and tyrosine phosphorylation of FcεRI, SYK, and phospholipase C. Interestingly, FcεRI-mediated events in BMMCs with PAG-KO were restored upon CSK silencing. BMMCs with CSK-KD/PAG-KO resembled BMMCs with CSK-KD alone. Unexpectedly, cells with CSK-KD showed reduced kinase activity of LYN and decreased phosphorylation of transcription factor STAT5. This was accompanied by impaired production of proinflammatory cytokines and chemokines in antigen-activated cells. In line with this, BMMCs with CSK-KD exhibited enhanced phosphorylation of protein phosphatase SHP-1, which provides a negative feedback loop for regulating phosphorylation of STAT5 and LYN kinase activity. Furthermore, we found that in WT BMMCs SHP-1 forms complexes containing LYN, CSK, and STAT5. Altogether, our data demonstrate that in FcεRI-activated mast cells CSK is a negative regulator of degranulation and chemotaxis, but a positive regulator of adhesion to fibronectin and production of proinflammatory cytokines. Some of these pathways are not dependent on the presence of PAG.
- Keywords
- C-terminal Src kinase, LYN, SHP-1, STAT5, cytokines, degranulation, mast cell, phosphoprotein associated with glycosphingolipid-enriched microdomains,
- MeSH
- Analysis of Variance MeSH
- Bone Marrow Cells physiology MeSH
- CSK Tyrosine-Protein Kinase MeSH
- Cytokines metabolism MeSH
- Cell Degranulation MeSH
- Fibronectins metabolism MeSH
- Phosphoproteins metabolism MeSH
- Phosphorylation MeSH
- Genetic Vectors MeSH
- HEK293 Cells MeSH
- Humans MeSH
- Mast Cells physiology MeSH
- Membrane Proteins metabolism MeSH
- Intercellular Signaling Peptides and Proteins MeSH
- Mice, Inbred C57BL MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Receptors, IgE metabolism MeSH
- Signal Transduction immunology MeSH
- src-Family Kinases metabolism physiology MeSH
- STAT5 Transcription Factor metabolism MeSH
- Tyrosine metabolism MeSH
- Protein Tyrosine Phosphatase, Non-Receptor Type 6 metabolism MeSH
- Calcium metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- CSK Tyrosine-Protein Kinase MeSH
- CSK protein, human MeSH Browser
- Cytokines MeSH
- Fibronectins MeSH
- Phosphoproteins MeSH
- lyn protein-tyrosine kinase MeSH Browser
- Membrane Proteins MeSH
- Intercellular Signaling Peptides and Proteins MeSH
- Pag protein, mouse MeSH Browser
- Pag1 protein, mouse MeSH Browser
- Ptpn6 protein, mouse MeSH Browser
- Receptors, IgE MeSH
- src-Family Kinases MeSH
- STAT5 Transcription Factor MeSH
- Tyrosine MeSH
- Protein Tyrosine Phosphatase, Non-Receptor Type 6 MeSH
- Calcium MeSH