Nejvíce citovaný článek - PubMed ID 27148049
A Rat Model of Alzheimer's Disease Based on Abeta42 and Pro-oxidative Substances Exhibits Cognitive Deficit and Alterations in Glutamatergic and Cholinergic Neurotransmitter Systems
Aging and chronic sleep deprivation (SD) are well-recognized risk factors for Alzheimer's disease (AD), with N-methyl-D-aspartate receptor (NMDA) and downstream nitric oxide (NO) signalling implicated in the process. Herein, we investigate the impact of the age- and acute or chronic SD-dependent changes on the expression of NMDA receptor subunits (NR1, NR2A, and NR2B) and on the activities of NO synthase (NOS) isoforms in the cortex of Wistar rats, with reference to cerebral lateralization. In young adult controls, somewhat lateralized seasonal variations in neuronal and endothelial NOS have been observed. In aged rats, overall decreases in NR1, NR2A, and NR2B expression and reduction in neuronal and endothelial NOS activities were found. The age-dependent changes in NR1 and NR2B significantly correlated with neuronal NOS in both hemispheres. Changes evoked by chronic SD (dysfunction of endothelial NOS and the increasing role of NR2A) differed from those evoked by acute SD (increase in inducible NOS in the right side). Collectively, these results demonstrate age-dependent regulation of the level of NMDA receptor subunits and downstream NOS isoforms throughout the rat brain, which could be partly mimicked by SD. As described herein, age and SD alterations in the prevalence of NMDA receptors and NOS could contribute towards cognitive decline in the elderly, as well as in the pathobiology of AD and the neurodegenerative process.
- Klíčová slova
- NMDA receptor subunits, acute and chronic sleep deprivation, aging, brain lateralization, cortex, nitric oxide synthases,
- MeSH
- Alzheimerova nemoc epidemiologie etiologie MeSH
- krysa rodu Rattus MeSH
- membránové glykoproteiny genetika metabolismus MeSH
- mozková kůra metabolismus MeSH
- oxid dusnatý metabolismus MeSH
- potkani Wistar MeSH
- receptory N-methyl-D-aspartátu genetika metabolismus MeSH
- regulace genové exprese MeSH
- rizikové faktory MeSH
- signální transdukce * MeSH
- spánková deprivace metabolismus patofyziologie MeSH
- stárnutí metabolismus MeSH
- synthasa oxidu dusnatého metabolismus MeSH
- věkové faktory MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Grin3a protein, rat MeSH Prohlížeč
- membránové glykoproteiny MeSH
- N-methyl D-aspartate receptor subtype 2A MeSH Prohlížeč
- NR2B NMDA receptor MeSH Prohlížeč
- oxid dusnatý MeSH
- receptory N-methyl-D-aspartátu MeSH
- synthasa oxidu dusnatého MeSH
The McGill-R-Thy1-APP transgenic rat is an animal model of the familial form of Alzheimer's disease (AD). This model mirrors several neuropathological hallmarks of the disease, including the accumulation of beta-amyloid and the formation of amyloid plaques (in homozygous animals only), neuroinflammation and the gradual deterioration of cognitive functions even prior to plaque formation, although it lacks the tauopathy observed in human victims of AD. The goal of the present study was a thorough characterization of the homozygous model with emphasis on its face validity in several domains of behavior known to be affected in AD patients, including cognitive functions, motor coordination, emotionality, sociability, and circadian activity patterns. On the behavioral level, we found normal locomotor activity in spontaneous exploration, but problems with balance and gait coordination, increased anxiety and severely impaired spatial cognition in 4-7 month old homozygous animals. The profile of social behavior and ultrasonic communication was altered in the McGill rats, without a general social withdrawal. McGill rats also exhibited changes in circadian profile, with a shorter free-running period and increased total activity during the subjective night, without signs of sleep disturbances during the inactive phase. Expression of circadian clock gene Bmal1 was found to be increased in the parietal cortex and cerebellum, while Nr1d1 expression was not changed. The clock-controlled gene Prok2 expression was found to be elevated in the parietal cortex and hippocampus, which might have contributed to the observed changes in circadian phenotype. We conclude that the phenotype in the McGill rat model is not restricted to the cognitive domain, but also includes gait problems, changes in emotionality, social behavior, and circadian profiles. Our findings show that the model should be useful for the development of new therapeutic approaches targeting not only memory decline but also other symptoms decreasing the quality of life of AD patients.
- Klíčová slova
- Alzheimer's disease, amyloid precursor protein, circadian system, cognition, rat, social behavior, transgenic,
- Publikační typ
- časopisecké články MeSH
RATIONALE: There is a persistent pressing need for valid animal models of cognitive and mnemonic disruptions (such as seen in Alzheimer's disease and other dementias) usable for preclinical research. OBJECTIVES: We have set out to test the validity of administration of biperiden, an M1-acetylcholine receptor antagonist with central selectivity, as a potential tool for generating a fast screening model of cognitive impairment, in outbred Wistar rats. METHODS: We used several variants of the Morris water maze task: (1) reversal learning, to assess cognitive flexibility, with probe trials testing memory retention; (2) delayed matching to position (DMP), to evaluate working memory; and (3) "counter-balanced acquisition," to test for possible anomalies in acquisition learning. We also included a visible platform paradigm to reveal possible sensorimotor and motivational deficits. RESULTS: A significant effect of biperiden on memory acquisition and retention was found in the counter-balanced acquisition and probe trials of the counter-balanced acquisition and reversal tasks. Strikingly, a less pronounced deficit was observed in the DMP. No effects were revealed in the reversal learning task. CONCLUSIONS: Based on our results, we do not recommend biperiden as a reliable tool for modeling cognitive impairment.
- Klíčová slova
- Anticholinergics, Learning, Memory, Morris water maze, Muscarinic receptors, Rat,
- MeSH
- Alzheimerova nemoc psychologie MeSH
- antagonisté muskarinových receptorů farmakologie MeSH
- biperiden farmakologie MeSH
- bludiště - učení účinky léků MeSH
- chování zvířat účinky léků MeSH
- kognitivní dysfunkce psychologie MeSH
- krátkodobá paměť účinky léků MeSH
- krysa rodu Rattus * MeSH
- modely nemocí na zvířatech * MeSH
- poruchy paměti psychologie MeSH
- potkani Wistar MeSH
- reverzní učení účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus * MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antagonisté muskarinových receptorů MeSH
- biperiden MeSH