Most cited article - PubMed ID 27177985
Therapeutic and reactivating efficacy of oximes K027 and K203 against a direct acetylcholinesterase inhibitor
Therapeutic application of newly developed oximes is limited due to their adverse effects on different tissues. Within this article, it has been investigated which morphological changes could be observed in Wistar rats after the treatment with increasing doses of selected acetyl cholinesterase reactivators - asoxime, obidoxime, K027, K048, and K075. Subsequently, heart, diaphragm and musculus popliteus were obtained for pathohistological and semiquantitative analysis 24 hrs and 7 days after im administration of a single dose of 0.1 LD50, 0.5 LD50, and 1.0 LD50 of each oxime. Different muscle damage score was based on an estimation scale from 0 (no damage) to 5 (strong damage). In rats treated with 0.1 LD50 of each oxime, muscle fibres did not show any change. The intensive degeneration was found in all muscles after treatment with 0.5 LD50 of asoxime and obidoxime, respectively. Acute toxic muscle injury was developed within 7 days following treatment with 0.5 LD50 and 1.0 LD50 of each oxime, with the highest values in K048 and K075 group (P < 0.001 vs. control and asoxime), respectively. The early muscle alterations observed in our study seem to contribute to the pathogenesis of the oxime-induced toxic muscle injury, which probably manifests as necrosis and/or inflammation.
- MeSH
- Diaphragm drug effects injuries MeSH
- Muscle, Skeletal drug effects injuries MeSH
- Rats MeSH
- Myositis chemically induced MeSH
- Necrosis MeSH
- Oximes toxicity MeSH
- Rats, Wistar MeSH
- Pyridinium Compounds toxicity MeSH
- Heart drug effects MeSH
- Muscles drug effects pathology MeSH
- Toxicity Tests, Acute MeSH
- Dose-Response Relationship, Drug MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 1-(4-hydroxyiminomethylpyridinium)-3-(carbamoylpyridinium) propane dibromide MeSH Browser
- 1-(4-hydroxyiminomethylpyridinium)-4-(4-carbamoylpyridinium)butane MeSH Browser
- K075 compound MeSH Browser
- Oximes MeSH
- Pyridinium Compounds MeSH
BACKGROUND: The aim of our study was to compare the ability of two combinations of oximes (HI-6 + trimedoxime and HI-6 + K203) with atropine to counteract acute sarin-induced brain damage with the efficacy of antidotal treatment involving single oxime (HI-6) and atropin using in vivo methods. METHODS: Brain damage and neuroprotective effects of antidotal treatment were evaluated in rats poisoned with sarin at a sublethal dose (108 μg/kg i.m.; 90% LD50) using histopathological, Fluoro-Jade B and Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis 24 h after sarin administration. RESULTS: Both combinations of oximes reduce the number of rats that died before the end of experiment compared to non-treated sarin poisoning and sarin poisoning treated with HI-6 and atropine. In the case of treatment of sarin poisoning with HI-6 in combination with K203, all rats survived till the end of experiment. HI-6 with atropine was able to reduce sarin-induced brain damage, however, both combinations were slightly more effective. CONCLUSIONS: The oxime HI-6 in combination with K203 and atropine seems to be the most effective. Thus, both tested oxime combinations bring a small benefit in elimination of acute sarin-induced brain damage compared to single oxime antidotal therapy.
- Keywords
- FluoraJadeB, HI-6, Histopathology, K203, Rats, Sarin, TUNEL, Trimedoxime,
- MeSH
- Antidotes therapeutic use MeSH
- Drug Therapy, Combination MeSH
- Neurotoxicity Syndromes drug therapy MeSH
- Oximes therapeutic use MeSH
- Rats, Wistar MeSH
- Sarin poisoning MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antidotes MeSH
- Oximes MeSH
- Sarin MeSH