Most cited article - PubMed ID 27432762
Ring-substituted 8-hydroxyquinoline-2-carboxanilides as photosystem II inhibitors
A set of twenty-four 3-hydroxynaphthalene-2-carboxanilides, disubstituted on the anilide ring by combinations of methoxy/methyl/fluoro/chloro/bromo and ditrifluoromethyl groups at different positions, was prepared. The compounds were tested for their ability to inhibit photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. N-(3,5-Difluorophenyl)-, N-(3,5-dimethylphenyl)-, N-(2,5-difluorophenyl)- and N-(2,5-dimethylphenyl)-3-hydroxynaphthalene-2-carboxamides showed the highest PET-inhibiting activity (IC50 ~ 10 µM) within the series. These compounds were able to inhibit PET in photosystem II. It has been found that PET-inhibiting activity strongly depends on the position of the individual substituents on the anilide ring and on the lipophilicity of the compounds. The electron-withdrawing properties of the substituents contribute towards the PET activity of these compounds.
- Keywords
- PET inhibition, hydroxynaphthalene-carboxamides, spinach chloroplasts, structure-activity relationships,
- MeSH
- Chloroplasts drug effects metabolism MeSH
- Photosynthesis drug effects MeSH
- Photosystem II Protein Complex antagonists & inhibitors metabolism MeSH
- Herbicides chemistry metabolism MeSH
- Naphthalenes chemistry metabolism MeSH
- Spinacia oleracea drug effects metabolism MeSH
- Electron Transport drug effects MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Photosystem II Protein Complex MeSH
- Herbicides MeSH
- Naphthalenes MeSH
A series of twenty-two novel N-(disubstituted-phenyl)-3-hydroxynaphthalene- 2-carboxamide derivatives was synthesized and characterized as potential antimicrobial agents. N-[3,5-bis(trifluoromethyl)phenyl]- and N-[2-chloro-5-(trifluoromethyl)phenyl]-3-hydroxy- naphthalene-2-carboxamide showed submicromolar (MICs 0.16-0.68 µM) activity against methicillin-resistant Staphylococcus aureus isolates. N-[3,5-bis(trifluoromethyl)phenyl]- and N-[4-bromo-3-(trifluoromethyl)phenyl]-3-hydroxynaphthalene-2-carboxamide revealed activity against M. tuberculosis (both MICs 10 µM) comparable with that of rifampicin. Synergistic activity was observed for the combinations of ciprofloxacin with N-[4-bromo-3-(trifluoromethyl)phenyl]- and N-(4-bromo-3-fluorophenyl)-3-hydroxynaphthalene-2-carboxamides against MRSA SA 630 isolate. The similarity-related property space assessment for the congeneric series of structurally related carboxamide derivatives was performed using the principal component analysis. Interestingly, different distribution of mono-halogenated carboxamide derivatives with the -CF3 substituent is accompanied by the increased activity profile. A symmetric matrix of Tanimoto coefficients indicated the structural dissimilarities of dichloro- and dimetoxy-substituted isomers from the remaining ones. Moreover, the quantitative sampling of similarity-related activity landscape provided a subtle picture of favorable and disallowed structural modifications that are valid for determining activity cliffs. Finally, the advanced method of neural network quantitative SAR was engaged to illustrate the key 3D steric/electronic/lipophilic features of the ligand-site composition by the systematic probing of the functional group.
- Keywords
- CoMSA, IVE-PLS, MIC, MTT assay, antistaphylococcal activity, antitubercular activity, hydroxynaphthalenecarboxamides, lipophilicity, similarity-activity landscape index,
- MeSH
- Anti-Infective Agents chemical synthesis MeSH
- Methicillin-Resistant Staphylococcus aureus * MeSH
- Microbial Sensitivity Tests MeSH
- Mycobacterium tuberculosis * MeSH
- Naphthalenes chemistry MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anti-Infective Agents MeSH
- Naphthalenes MeSH
- naphthalene-2-carboxamide MeSH Browser
A series of twenty-six methoxylated and methylated N-aryl-1-hydroxynaphthalene- 2-carboxanilides was prepared and characterized as potential anti-invasive agents. The molecular structure of N-(2,5-dimethylphenyl)-1-hydroxynaphthalene-2-carboxamide as a model compound was determined by single-crystal X-ray diffraction. All the analysed compounds were tested against the reference strain Staphylococcus aureus and three clinical isolates of methicillin-resistant S. aureus as well as against Mycobacterium tuberculosis and M. kansasii. In addition, the inhibitory profile of photosynthetic electron transport in spinach (Spinacia oleracea L.) chloroplasts was specified. In vitro cytotoxicity of the most effective compounds was tested on the human monocytic leukaemia THP-1 cell line. The activities of N-(3,5-dimethylphenyl)-, N-(3-fluoro-5-methoxy-phenyl)- and N-(3,5-dimethoxyphenyl)-1-hydroxynaphthalene-2-carbox- amide were comparable with or even better than the commonly used standards ampicillin and isoniazid. All promising compounds did not show any cytotoxic effect at the concentration >30 µM. Moreover, an in silico evaluation of clogP features was performed for the entire set of the carboxamides using a range of software lipophilicity predictors, and cross-comparison with the experimentally determined lipophilicity (log k), in consensus lipophilicity estimation, was conducted as well. Principal component analysis was employed to illustrate noticeable variations with respect to the molecular lipophilicity (theoretical/experimental) and rule-of-five violations. Additionally, ligand-oriented studies for the assessment of the three-dimensional quantitative structure-activity relationship profile were carried out with the comparative molecular surface analysis to determine electron and/or steric factors that potentially contribute to the biological activities of the investigated compounds.
- Keywords
- 3D-QSAR, CoMSA, MTT assay, PET inhibition, X-Ray structure, antimycobacterial activity, antistaphylococcal activity, cytotoxicity, hydroxynaphthalenecarboxamides, lipophilicity,
- MeSH
- Ampicillin pharmacology MeSH
- Principal Component Analysis MeSH
- Anilides chemical synthesis chemistry pharmacology MeSH
- Anti-Bacterial Agents chemical synthesis chemistry pharmacology MeSH
- Chloroplasts drug effects physiology MeSH
- Photosynthesis drug effects MeSH
- Isoniazid pharmacology MeSH
- Humans MeSH
- Methicillin-Resistant Staphylococcus aureus drug effects growth & development MeSH
- Methylation MeSH
- Microbial Sensitivity Tests MeSH
- Mycobacterium kansasii drug effects growth & development MeSH
- Mycobacterium tuberculosis drug effects growth & development MeSH
- Naphthols chemical synthesis chemistry pharmacology MeSH
- Spinacia oleracea chemistry drug effects metabolism MeSH
- THP-1 Cells MeSH
- Electron Transport drug effects MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
- Names of Substances
- Ampicillin MeSH
- Anilides MeSH
- Anti-Bacterial Agents MeSH
- Isoniazid MeSH
- Naphthols MeSH
: A series of sixteen ring-substituted N-arylcinnamamides was prepared and characterized. Primary in vitro screening of all the synthesized compounds was performed against Staphylococcus aureus, three methicillin-resistant S. aureus strains, Mycobacterium tuberculosis H37Ra, Fusarium avenaceum, and Bipolaris sorokiniana. Several of the tested compounds showed antistaphylococcal, antitubercular, and antifungal activities comparable with or higher than those of ampicillin, isoniazid, and benomyl. (2E)-N-[3,5-bis(trifluoromethyl)phenyl]-3-phenylprop-2-enamide and (2E)-3-phenyl-N-[3-(trifluoromethyl)phenyl]prop-2-enamide showed the highest activities (MICs = 22.27 and 27.47 µM, respectively) against all four staphylococcal strains and against M.tuberculosis. These compounds showed an activity against biofilm formation of S.aureus ATCC 29213 in concentrations close to MICs and an ability to increase the activity of clinically used antibiotics with different mechanisms of action (vancomycin, ciprofloxacin, and tetracycline). In time-kill studies, a decrease of CFU/mL of >99% after 8 h from the beginning of incubation was observed. (2E)-N-(3,5-Dichlorophenyl)- and (2E)-N-(3,4-dichlorophenyl)-3-phenylprop-2-enamide had a MIC = 27.38 µM against M. tuberculosis, while a significant decrease (22.65%) of mycobacterial cell metabolism determined by the MTT assay was observed for the 3,5-dichlorophenyl derivative. (2E)-N-(3-Fluorophenyl)- and (2E)-N-(3-methylphenyl)-3-phenylprop-2-enamide exhibited MICs = 16.58 and 33.71 µM, respectively, against B. sorokiniana. The screening of the cytotoxicity of the most effective antimicrobial compounds was performed using THP-1 cells, and these chosen compounds did not shown any significant lethal effect. The compounds were also evaluated for their activity related to the inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. (2E)-N-(3,5-dichlorophenyl)-3-phenylprop-2-enamide (IC50 = 5.1 µM) was the most active PET inhibitor. Compounds with fungicide potency did not show any in vivo toxicity against Nicotiana tabacum var. Samsun. The structure⁻activity relationships are discussed.
- Keywords
- MTT assay, PET inhibition, antifungal activity, antistaphylococcal activity, antitubercular activity, biofilm, cinnamamides, structure–activity relationship, time-kill assay, toxicity,
- MeSH
- Anti-Bacterial Agents chemical synthesis chemistry pharmacology MeSH
- Antifungal Agents chemical synthesis chemistry pharmacology MeSH
- Antitubercular Agents chemical synthesis chemistry pharmacology MeSH
- Biofilms drug effects MeSH
- Cinnamates chemical synthesis chemistry pharmacology MeSH
- Fusarium drug effects MeSH
- Humans MeSH
- Methicillin-Resistant Staphylococcus aureus drug effects physiology MeSH
- Microbial Sensitivity Tests MeSH
- Mycobacterium tuberculosis drug effects physiology MeSH
- Plant Diseases microbiology MeSH
- Plants microbiology MeSH
- Staphylococcal Infections drug therapy MeSH
- Staphylococcus aureus drug effects physiology MeSH
- Chemistry Techniques, Synthetic MeSH
- Tuberculosis drug therapy MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Antifungal Agents MeSH
- Antitubercular Agents MeSH
- cinnamamide MeSH Browser
- Cinnamates MeSH
Series of seventeen new multihalogenated 1-hydroxynaphthalene-2-carboxanilides was prepared and characterized. All the compounds were tested for their activity related to the inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. 1-Hydroxy-N-phenylnaphthalene-2-carboxamides substituted in the anilide part by 3,5-dichloro-, 4-bromo-3-chloro-, 2,5-dibromo- and 3,4,5-trichloro atoms were the most potent PET inhibitors (IC50 = 5.2, 6.7, 7.6 and 8.0 µM, respectively). The inhibitory activity of these compounds depends on the position and the type of halogen substituents, i.e., on lipophilicity and electronic properties of individual substituents of the anilide part of the molecule. Interactions of the studied compounds with chlorophyll a and aromatic amino acids present in pigment-protein complexes mainly in PS II were documented by fluorescence spectroscopy. The section between P680 and plastoquinone QB in the PET chain occurring on the acceptor side of PS II can be suggested as the site of action of the compounds. The structure-activity relationships are discussed.
- Keywords
- hydroxynaphthalene-carboxamides, photosynthetic electron transport (PET) inhibition, spinach chloroplasts, structure-activity relationships,
- MeSH
- Chloroplasts drug effects metabolism MeSH
- Photosynthesis drug effects MeSH
- Photosystem II Protein Complex metabolism MeSH
- Inhibitory Concentration 50 MeSH
- Naphthols * chemical synthesis chemistry pharmacology MeSH
- Spinacia oleracea drug effects metabolism MeSH
- Electron Transport drug effects MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Photosystem II Protein Complex MeSH
- Naphthols * MeSH
Eight 1-[(2-chlorophenyl)carbamoyl]naphthalen-2-yl alkylcarbamates and eight 1-[(2-nitrophenyl)carbamoyl]naphthalen-2-yl alkylcarbamates were tested for their activity related to the inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. The PET-inhibiting activity of the compounds was relatively low; the corresponding IC50 values ranged from 0.05 to 0.664 mmol/L; and the highest activity within the series of compounds was observed for 1-[(2-chlorophenyl)-carbamoyl]naphthalen-2-yl propylcarbamate. It has been proven that the compounds are PET-inhibitors in photosystem II. Despite rather low PET-inhibiting activities, primary structure-activity trends can be discussed.
- Keywords
- PET inhibition, alkylcarbamates, hydroxynaphthalene-carboxamides, spinach chloroplasts, structure-activity relationships,
- MeSH
- Chloroplasts drug effects metabolism MeSH
- Photosynthesis drug effects MeSH
- Inhibitory Concentration 50 MeSH
- Carbamates chemistry pharmacology MeSH
- Spinacia oleracea metabolism MeSH
- Electron Transport drug effects MeSH
- Structure-Activity Relationship MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Carbamates MeSH