Most cited article - PubMed ID 27496994
Recent applications of capillary electromigration methods to separation and analysis of proteins
The problem of a growing resistance of bacteria and other microorganisms to conventional antibiotics gave rise to a search for new potent antimicrobial agents. Insect antimicrobial peptides (AMPs) seem to be promising novel potential anti-infective therapeutics. The dipeptide β-alanyl-tyrosine (β-Ala-Tyr) is one of the endogenous insect toxins exhibiting antibacterial activity against both Gram-negative and Gram-positive bacteria. Prior to testing its other antimicrobial activities, it has to be prepared in a pure form. In this study, we have developed a capillary zone electrophoresis (CZE) method for analysis of β-Ala-Tyr isolated from the extract of the hemolymph of larvae of the fleshfly Neobellieria bullata by reversed-phase high-performance liquid chromatography (RP-HPLC). Based on our previously described correlation between CZE and free-flow zone electrophoresis (FFZE), analytical CZE separation of β-Ala-Tyr and its admixtures have been converted into preparative purification of β-Ala-Tyr by FFZE with preparative capacity of 45.5 mg per hour. The high purity degree of the β-Ala-Tyr obtained by FFZE fractionation was confirmed by its subsequent CZE analysis.
- Keywords
- antimicrobial peptides, beta-alanyl-tyrosine, capillary zone electrophoresis, free-flow zone electrophoresis, peptide analysis, peptide purification,
- MeSH
- Anti-Infective Agents chemistry isolation & purification MeSH
- Dipeptides chemistry isolation & purification MeSH
- Electrophoresis methods MeSH
- Hemolymph chemistry MeSH
- Larva chemistry MeSH
- Sarcophagidae chemistry MeSH
- Chromatography, High Pressure Liquid MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- alanyltyrosine MeSH Browser
- Anti-Infective Agents MeSH
- Dipeptides MeSH
Microfluidics is the advanced microtechnology of fluid manipulation in channels with at least one dimension in the range of 1-100 microns. Microfluidic technology offers a growing number of tools for manipulating small volumes of fluid to control chemical, biological, and physical processes relevant to separation, analysis, and detection. Currently, microfluidic devices play an important role in many biological, chemical, physical, biotechnological and engineering applications. There are numerous ways to fabricate the necessary microchannels and integrate them into microfluidic platforms. In peptidomics and proteomics, microfluidics is often used in combination with mass spectrometric (MS) analysis. This review provides an overview of using microfluidic systems for peptidomics, proteomics and cell analysis. The application of microfluidics in combination with MS detection and other novel techniques to answer clinical questions is also discussed in the context of disease diagnosis and therapy. Recent developments and applications of capillary and microchip (electro)separation methods in proteomic and peptidomic analysis are summarized. The state of the art of microchip platforms for cell sorting and single-cell analysis is also discussed. Advances in detection methods are reported, and new applications in proteomics and peptidomics, quality control of peptide and protein pharmaceuticals, analysis of proteins and peptides in biomatrices and determination of their physicochemical parameters are highlighted.
- Keywords
- LOC, cell sorting, microTAS, microchip electrophoresis, microfluidics, peptides, peptidomics, proteins, proteomics, single-cell analysis,
- Publication type
- Journal Article MeSH
- Review MeSH