Most cited article - PubMed ID 27570150
Decrease in Methoprene tolerant and Taiman expression reduces juvenile hormone effects and enhances the levels of juvenile hormone circulating in males of the linden bug Pyrrhocoris apterus
TAIMAN (TAI), the only insect ortholog of mammalian Steroid Receptor Coactivators (SRCs), is a critical modulator of ecdysone and juvenile hormone (JH) signaling pathways, which govern insect development and reproduction. The modulatory effect is mediated by JH-dependent TAI's heterodimerization with JH receptor Methoprene-tolerant and association with the Ecdysone Receptor complex. Insect hormones regulate insect physiology and development in concert with abiotic cues, such as photo- and thermoperiod. Here we tested the effects of JH and ecdysone signaling on the circadian clock by a combination of microsurgical operations, application of hormones and hormone mimics, and gene knockdowns in the linden bug Pyrrhocoris apterus males. Silencing taiman by each of three non-overlapping double-strand RNA fragments dramatically slowed the free-running period (FRP) to 27-29 hours, contrasting to 24 hours in controls. To further corroborate TAIMAN's clock modulatory function in the insect circadian clock, we performed taiman knockdown in the cockroach Blattella germanica. Although Blattella and Pyrrhocoris lineages separated ~380 mya, B. germanica taiman silencing slowed the FRP by more than 2 hours, suggesting a conserved TAI clock function in (at least) some insect groups. Interestingly, the pace of the linden bug circadian clock was neither changed by blocking JH and ecdysone synthesis, by application of the hormones or their mimics nor by the knockdown of corresponding hormone receptors. Our results promote TAI as a new circadian clock modulator, a role described for the first time in insects. We speculate that TAI participation in the clock is congruent with the mammalian SRC-2 role in orchestrating metabolism and circadian rhythms, and that TAI/SRCs might be conserved components of the circadian clock in animals.
- MeSH
- Cell Membrane MeSH
- Circadian Clocks * genetics MeSH
- Circadian Rhythm genetics MeSH
- Ecdysone genetics MeSH
- Insecta MeSH
- Juvenile Hormones genetics MeSH
- Mammals MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Ecdysone MeSH
- Juvenile Hormones MeSH
The rigorous balance of endocrine signals that control insect reproductive physiology is crucial for the success of egg production. Rhodnius prolixus, a blood-feeding insect and main vector of Chagas disease, has been used over the last century as a model to unravel aspects of insect metabolism and physiology. Our recent work has shown that nutrition, insulin signaling, and two main types of insect lipophilic hormones, juvenile hormone (JH) and ecdysteroids, are essential for successful reproduction in R. prolixus; however, the interplay behind these endocrine signals has not been established. We used a combination of hormone treatments, gene expression analyses, hormone measurements, and ex vivo experiments using the corpus allatum or the ovary, to investigate how the interaction of these endocrine signals might define the hormone environment for egg production. The results show that after a blood meal, circulating JH levels increase, a process mainly driven through insulin and allatoregulatory neuropeptides. In turn, JH feeds back to provide some control over its own biosynthesis by regulating the expression of critical biosynthetic enzymes in the corpus allatum. Interestingly, insulin also stimulates the synthesis and release of ecdysteroids from the ovary. This study highlights the complex network of endocrine signals that, together, coordinate a successful reproductive cycle.
- Keywords
- corpus allatum, endocrine signaling, hormone titers, insect, ovary,
- MeSH
- Ecdysteroids metabolism MeSH
- Insect Hormones * metabolism MeSH
- Insulin, Regular, Human MeSH
- Insulin metabolism MeSH
- Juvenile Hormones metabolism MeSH
- Rhodnius * metabolism MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Ecdysteroids MeSH
- Insect Hormones * MeSH
- Insulin, Regular, Human MeSH
- Insulin MeSH
- Juvenile Hormones MeSH
Juvenile hormones (JHs) control insect metamorphosis and reproduction. JHs act through a receptor complex consisting of methoprene-tolerant (Met) and taiman (Tai) proteins to induce transcription of specific genes. Among chemically diverse synthetic JH mimics (juvenoids), some of which serve as insecticides, unique peptidic juvenoids stand out as being highly potent yet exquisitely selective to a specific family of true bugs. Their mode of action is unknown. Here we demonstrate that, like established JH receptor agonists, peptidic juvenoids act upon the JHR Met to halt metamorphosis in larvae of the linden bug, Pyrrhocoris apterus. Peptidic juvenoids induced ligand-dependent dimerization between Met and Tai proteins from P. apterus but, consistent with their selectivity, not from other insects. A cell-based split-luciferase system revealed that the Met-Tai complex assembled within minutes of agonist presence. To explore the potential of juvenoid peptides, we synthesized 120 new derivatives and tested them in Met-Tai interaction assays. While many substituents led to loss of activity, improved derivatives active at sub-nanomolar range outperformed hitherto existing peptidic and classical juvenoids including fenoxycarb. Their potency in inducing Met-Tai interaction corresponded with the capacity to block metamorphosis in P. apterus larvae and to stimulate oogenesis in reproductively arrested adult females. Molecular modeling demonstrated that the high potency correlates with high affinity. This is a result of malleability of the ligand-binding pocket of P. apterus Met that allows larger peptidic ligands to maximize their contact surface. Our data establish peptidic juvenoids as highly potent and species-selective novel JHR agonists.
- Keywords
- hormone receptor, juvenile hormone, ligand-binding pocket, metamorphosis, oogenesis,
- MeSH
- Insecta metabolism MeSH
- Juvenile Hormones * metabolism MeSH
- Larva MeSH
- Ligands MeSH
- Methoprene * metabolism MeSH
- Peptides pharmacology MeSH
- Reproduction MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Juvenile Hormones * MeSH
- Ligands MeSH
- Methoprene * MeSH
- Peptides MeSH
Juvenile hormones (JHs) are sesquiterpenoids synthesized by the corpora allata (CA). They play critical roles during insect development and reproduction. The first JH was described in 1934 as a "metamorphosis inhibitory hormone" in Rhodnius prolixus by Sir Vincent B. Wigglesworth. Remarkably, in spite of the importance of R. prolixus as vectors of Chagas disease and model organisms in insect physiology, the original JH that Wigglesworth described for the kissing-bug R. prolixus remained unidentified. We employed liquid chromatography mass spectrometry to search for the JH homologs present in the hemolymph of fourth instar nymphs of R. prolixus. Wigglesworth's original JH is the JH III skipped bisepoxide (JHSB3), a homolog identified in other heteropteran species. Changes in the titer of JHSB3 were studied during the 10-day long molting cycle of 4th instar nymph, between a blood meal and the ecdysis to 5th instar. In addition we measured the changes of mRNA levels in the CA for the 13 enzymes of the JH biosynthetic pathway during the molting cycle of 4th instar. Almost 90 years after the first descriptions of the role of JH in insects, this study finally reveals that the specific JH homolog responsible for Wigglesworth's original observations is JHSB3.
- MeSH
- Metamorphosis, Biological * MeSH
- Corpora Allata chemistry MeSH
- Epoxy Compounds chemistry MeSH
- Hemolymph chemistry MeSH
- Pupa chemistry physiology MeSH
- Nymph chemistry physiology MeSH
- Rhodnius chemistry physiology MeSH
- Sesquiterpenes chemistry MeSH
- Molting physiology MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Epoxy Compounds MeSH
- juvenile hormone III MeSH Browser
- Sesquiterpenes MeSH