Nejvíce citovaný článek - PubMed ID 27596073
Guidelines for Homology Modeling of Dopamine, Norepinephrine, and Serotonin Transporters
BACKGROUND: Currently, the diagnosis and treatment of neuroblastomas-the most frequent solid tumors in children-exploit the norepinephrine transporter (hNET) via radiolabeled norepinephrine analogs. We aim to develop a nanomedicine-based strategy towards precision therapy by targeting hNET cell-surface protein with hNET-derived homing peptides. RESULTS: The peptides (seq. GASNGINAYL and SLWERLAYGI) were shown to bind high-resolution homology models of hNET in silico. In particular, one unique binding site has marked the sequence and structural similarities of both peptides, while most of the contribution to the interaction was attributed to the electrostatic energy of Asn and Arg (< - 228 kJ/mol). The peptides were comprehensively characterized by computational and spectroscopic methods showing ~ 21% β-sheets/aggregation for GASNGINAYL and ~ 27% α-helix for SLWERLAYGI. After decorating 12-nm ferritin-based nanovehicles with cysteinated peptides, both peptides exhibited high potential for use in actively targeted neuroblastoma nanotherapy with exceptional in vitro biocompatibility and stability, showing minor yet distinct influences of the peptides on the global expression profiles. Upon binding to hNET with fast binding kinetics, GASNGINAYLC peptides enabled rapid endocytosis of ferritins into neuroblastoma cells, leading to apoptosis due to increased selective cytotoxicity of transported payload ellipticine. Peptide-coated nanovehicles significantly showed higher levels of early apoptosis after 6 h than non-coated nanovehicles (11% and 7.3%, respectively). Furthermore, targeting with the GASNGINAYLC peptide led to significantly higher degree of late apoptosis compared to the SLWERLAYGIC peptide (9.3% and 4.4%, respectively). These findings were supported by increased formation of reactive oxygen species, down-regulation of survivin and Bcl-2 and up-regulated p53. CONCLUSION: This novel homing nanovehicle employing GASNGINAYLC peptide was shown to induce rapid endocytosis of ellipticine-loaded ferritins into neuroblastoma cells in selective fashion and with successful payload. Future homing peptide development via lead optimization and functional analysis can pave the way towards efficient peptide-based active delivery of nanomedicines to neuroblastoma cells.
- Klíčová slova
- Ferritin, Homing peptide, Neuroblastoma, Norepinephrine transporter, Targeted therapy,
- MeSH
- endocytóza genetika MeSH
- ferritiny chemie MeSH
- lékové transportní systémy metody MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nanomedicína MeSH
- nanostruktury chemie MeSH
- neuroblastom metabolismus MeSH
- peptidy chemie genetika metabolismus MeSH
- proteiny přenášející noradrenalin přes plazmatickou membránu * chemie genetika metabolismus MeSH
- protinádorové látky chemie farmakokinetika farmakologie MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ferritiny MeSH
- peptidy MeSH
- proteiny přenášející noradrenalin přes plazmatickou membránu * MeSH
- protinádorové látky MeSH
The purpose of this quick guide is to help new modelers who have little or no background in comparative modeling yet are keen to produce high-resolution protein 3D structures for their study by following systematic good modeling practices, using affordable personal computers or online computational resources. Through the available experimental 3D-structure repositories, the modeler should be able to access and use the atomic coordinates for building homology models. We also aim to provide the modeler with a rationale behind making a simple list of atomic coordinates suitable for computational analysis abiding to principles of physics (e.g., molecular mechanics). Keeping that objective in mind, these quick tips cover the process of homology modeling and some postmodeling computations such as molecular docking and molecular dynamics (MD). A brief section was left for modeling nonprotein molecules, and a short case study of homology modeling is discussed.
- MeSH
- algoritmy MeSH
- aminokyseliny chemie MeSH
- biologické modely MeSH
- databáze proteinů MeSH
- internet MeSH
- ionty MeSH
- koncentrace vodíkových iontů MeSH
- ligandy MeSH
- počítačová simulace MeSH
- posttranslační úpravy proteinů MeSH
- proteiny chemie MeSH
- rozpouštědla MeSH
- sbalování proteinů MeSH
- simulace molekulární dynamiky MeSH
- simulace molekulového dockingu MeSH
- software MeSH
- strojové učení MeSH
- strukturní homologie proteinů MeSH
- voda MeSH
- výpočetní biologie metody MeSH
- zobrazování trojrozměrné metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminokyseliny MeSH
- ionty MeSH
- ligandy MeSH
- proteiny MeSH
- rozpouštědla MeSH
- voda MeSH
Targeted therapy is a promising approach for treatment of neuroblastoma as evident from the large number of targeting agents employed in clinical practice today. In the absence of known crystal structures, researchers rely on homology modeling to construct template-based theoretical structures for drug design and testing. Here, we discuss three candidate cell surface proteins that are suitable for homology modeling: human norepinephrine transporter (hNET), anaplastic lymphoma kinase (ALK), and neurotrophic tyrosine kinase receptor 2 (NTRK2 or TrkB). When choosing templates, both sequence identity and structure quality are important for homology modeling and pose the first of many challenges in the modeling process. Homology modeling of hNET can be improved using template models of dopamine and serotonin transporters instead of the leucine transporter (LeuT). The extracellular domains of ALK and TrkB are yet to be exploited by homology modeling. There are several idiosyncrasies that require direct attention throughout the process of model construction, evaluation and refinement. Shifts/gaps in the alignment between the template and target, backbone outliers and side-chain rotamer outliers are among the main sources of physical errors in the structures. Low-conserved regions can be refined with loop modeling method. Residue hydrophobicity, accessibility to bound metals or glycosylation can aid in model refinement. We recommend resolving these idiosyncrasies as part of "good modeling practice" to obtain highest quality model. Decreasing physical errors in protein structures plays major role in the development of targeting agents and understanding of chemical interactions at the molecular level.
- Klíčová slova
- anaplastic lymphoma kinase, homology modeling, neuroblastoma, neurotrophic tyrosine kinase receptor, norepinephrine transporter, targeted therapy,
- Publikační typ
- časopisecké články MeSH