Most cited article - PubMed ID 27694046
Linking toxicity profiles to pollutants in sludge and sediments
BACKGROUND: Although fertilization and crop rotation practices are commonly used worldwide in agriculture to maximize crop yields, their long-term effect on the structures of soil microorganisms is still poorly understood. This study investigated the long-term impact of fertilization and crop rotation on soil microbial diversity and the microbial community structure in four different locations with three soil types. Since 1996, manure (MF; 330 kg N/ha), sewage sludge (SF; 330 and SF3x; 990 kg N/ha), and NPK (NPK; 330 kg N/ha) fertilizers were periodically applied to the soils classified as chernozem, luvisol and cambisol, which are among the most abundant or fertile soils used for agricultural purposes in the world. In these soils, potato (Solanum tuberosum L.), winter wheat (Triticum aestivum L.), and spring barley (Hordeum vulgare L.) were rotated every three years. RESULTS: Soil chemistry, which was significantly associated with location, fertilization, crop rotation, and the interaction of fertilization and location, was the dominant driver of soil microbial communities, both prokaryotic and fungal. A direct effect of long-term crop rotation and fertilization on the structure of their communities was confirmed, although there was no evidence of their influence on microbial diversity. Fungal and bacterial communities responded differently to fertilization treatments; prokaryotic communities were only significantly different from the control soil (CF) in soils treated with MF and SF3x, while fungal communities differed across all treatments. Indicator genera were identified for different treatments. These taxa were either specific for their decomposition activities or fungal plant pathogens. Sequential rotation of the three crops restricted the growth of several of the indicator plant pathogens. CONCLUSIONS: Long-term fertilization and crop rotation significantly altered microbial community structure in the soil. While fertilization affected soil microorganisms mainly through changes in nutrient profile, crop rotations lead to the attraction and repulsion of specific plant pathogens. Such changes in soil microbial communities need to be considered when planning soil management.
- Keywords
- Cambisol, Chernozem, Community structure, Luvisol, Manure, Microbial diversity, NPK fertilizers, Sewage sludge,
- Publication type
- Journal Article MeSH
Certain industrial chemicals accumulate in the environment due to their recalcitrant properties. Bioremediation uses the capability of some environmental bacteria to break down these chemicals and attenuate the pollution. One such bacterial strain, designated Pvy, was isolated from sediment samples from a lagoon in Romania located near an oil refinery due to its capacity to degrade dibenzofuran (DF). The genome sequence of the Pvy strain was obtained using an Oxford Nanopore MiniION platform. According to the consensus 16S rRNA gene sequence that was compiled from six 16S rRNA gene copies contained in the genome and orthologous average nucleotide identity (OrthoANI) calculation, the Pvy strain was identified as Pseudomonas veronii, which confirmed the identification obtained with the aid of MALDI-TOF mass spectrometry and MALDI BioTyper. The genome was analyzed with respect to enzymes responsible for the overall biodegradative versatility of the strain. The Pvy strain was able to derive carbon from naphthalene (NP) and several aromatic compounds of natural origin, including salicylic, protocatechuic, p-hydroxybenzoic, trans-cinnamic, vanillic, and indoleacetic acids or vanillin, and was shown to degrade but not utilize DF. In total seven loci were found in the Pvy genome, which enables the strain to participate in the degradation of these aromatic compounds. Our experimental data also indicate that the transcription of the NP-dioxygenase α-subunit gene (ndoB), carried by the plasmid of the Pvy strain, is inducible by DF. These features make the Pvy strain a potential candidate for various bioremediation applications.
- Keywords
- Pseudomonas veronii strain Pvy, biodegradation, denitrification, dibenzofuran, dioxygenase, heavy-metal tolerance, nanopore technology, organic phosphate mineralization, whole-genome sequencing,
- MeSH
- Biodegradation, Environmental MeSH
- Dibenzofurans * MeSH
- Genomics * MeSH
- Pseudomonas MeSH
- RNA, Ribosomal, 16S MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Dibenzofurans * MeSH
- RNA, Ribosomal, 16S MeSH
An understanding of how fertilization influences endophytes is crucial for sustainable agriculture, since the manipulation of the plant microbiome could affect plant fitness and productivity. This study was focused on the response of microbial communities in the soil and tubers to the regular application of manure (MF; 330 kg N/ha), sewage sludge (SF; 330 and SF3x; 990 kg N/ha), and chemical fertilizer (NPK; 330-90-300 kg N-P-K/ha). Unfertilized soil was used as a control (CF), and the experiment was set up at two distinct sites. All fertilization treatments significantly altered the prokaryotic and fungal communities in soil, whereas the influence of fertilization on the community of endophytes differed for each site. At the site with cambisol, prokaryotic and fungal endophytes were significantly shifted by MF and SF3 treatments. At the site with chernozem, neither the prokaryotic nor fungal endophytic communities were significantly associated with fertilization treatments. Fertilization significantly increased the relative abundance of the plant-beneficial bacteria Stenotrophomonas, Sphingomonas and the arbuscular mycorrhizal fungi. In tubers, the relative abundance of Fusarium was lower in MF-treated soil compared to CF. Although fertilization treatments clearly influenced the soil and endophytic community structure, we did not find any indication of human pathogens being transmitted into tubers via organic fertilizers.
- Keywords
- NPK, endophytic communities, manure, sewage sludge, soil microbial communities,
- Publication type
- Journal Article MeSH