Nejvíce citovaný článek - PubMed ID 27872334
The polymicrobial biofilm (PMBF) is formed when microbes from multiple species co-aggregate into an envelope made of extra polymeric substances (EPS) that keep the microbes safe from external stresses. The formation of PMBF has been linked to a variety of human infections, including cystic fibrosis, dental caries, urinary tract infections, etc. Multiple microbial species co-aggregation during an infection results in a recalcitrant biofilm formation, which is a seriously threatening phenomenon. It is challenging to treat polymicrobial biofilms since they contain multiple microbes which show drug resistance to various antibiotics/antifungals. The present study discusses various approaches by which an antibiofilm compound works. Depending on their mode of action, antibiofilm compounds can block the adhesion of cells to one another, modify membranes/walls, or disrupt quorum-sensing systems.
- Klíčová slova
- Antibiofilm compounds, Antimicrobial resistance, Cell adhesion, Polymicrobial biofilm,
- MeSH
- antibakteriální látky farmakologie MeSH
- antifungální látky MeSH
- biofilmy MeSH
- lidé MeSH
- quorum sensing MeSH
- zubní kaz * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antibakteriální látky MeSH
- antifungální látky MeSH
Antimicrobial peptides (AMPs) are crucial effectors of the innate immune system. They provide the first line of defense against a variety of pathogens. AMPs display synergistic effects with conventional antibiotics, and thus present the potential for combined therapies. Insects are extremely resistant to bacterial infections. Insect AMPs are cationic and comprise less than 100 amino acids. These insect peptides exhibit an antimicrobial effect by disrupting the microbial membrane and do not easily allow microbes to develop drug resistance. Currently, membrane mechanisms underlying the antimicrobial effects of AMPs are proposed by different modes: the barrel-stave mode, toroidal-pore, carpet, and disordered toroidal-pore are the typical modes. Positive charge quantity, hydrophobic property and the secondary structure of the peptide are important for the antibacterial activity of AMPs. At present, several structural families of AMPs from insects are known (defensins, cecropins, drosocins, attacins, diptericins, ponericins, metchnikowins, and melittin), but new AMPs are frequently discovered. We reviewed the biological effects of the major insect AMPs. This review will provide further information that facilitates the study of insect AMPs and shed some light on novel microbicides.
- Klíčová slova
- AMP *, Structure-activity relationship *, antimicrobial peptides *, mechanism of action *, modification *,
- MeSH
- antiinfekční látky chemie terapeutické užití MeSH
- bakteriální infekce farmakoterapie MeSH
- hmyz chemie MeSH
- sekvence aminokyselin MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antiinfekční látky MeSH