Most cited article - PubMed ID 27873386
Identification of multiple sclerosis patients at highest risk of cognitive impairment using an integrated brain magnetic resonance imaging assessment approach
BACKGROUND: In a retrospective multicentre cohort study, we explored the association between brain atrophy and multiple sclerosis (MS) disability using different MRI scanners and protocols at multiple sites. METHODS: Relapse-onset MS patients were included if they had two clinical MRIs 12 months apart and ≥2 Expanded Disability Status Scale (EDSS) scores. Percentage brain volume change (PBVC), percentage grey matter change (PGMC), fluid-attenuated inversion recovery (FLAIR) lesion volume change, whole brain volume (BV), grey matter volume (GMV), FLAIR lesion volume and T1 hypointense lesion volume were assessed by icobrain. Disability was measured by EDSS scores and 6-month confirmed disability progression (CDP). RESULTS: Of the 260 relapse-onset MS patients included, 204 (78%) MRI pairs were performed in the same scanner and 56 (22%) pairs were from different scanners. 93% of patients were on treatment and mean PBVC was -0.26% (±0.52). During the median follow-up of 2.8 years from the second MRI, median EDSS change was 0.0 and 12% patients experienced 6-month CDP. Cross-sectional BV and GMV at the later MRI showed a trend for association with CDP (HR 0.99; 95% CI 0.98 to 1.00; p=0.06). Only BV at the later MRI was associated with EDSS score (β -0.03, SE 0.01, p<0.001) and the rate of EDSS change over time (β -0.001, SE 0.0003, p=0.02). There was no association between longitudinal PBVC or PGMC and CDP or EDSS (p>0.05). CONCLUSION: In this highly treated MS cohort with low disability accrual, only cross-sectional BV showed an association with future EDSS scores, while no MRI metric predicted 6-month CDP. These findings highlight the limitations of current clinical MRI measures in predicting disability worsening in real-world settings.
- Keywords
- MRI, MULTIPLE SCLEROSIS,
- Publication type
- Journal Article MeSH
BACKGROUND: Although there is evidence that shows worse cognitive functioning in male patients with multiple sclerosis (MS), the role of brain pathology in this context is under-investigated. OBJECTIVE: To investigate sex differences in cognitive performance of MS patients, in the context of brain pathology and disease burden. METHODS: Brain MRI, neurological examination, neuropsychological assessment (Brief International Cognitive Assessment in MS-BICAMS, and Paced Auditory Verbal Learning Test-PASAT), and patient-reported outcome questionnaires were performed/administered in 1052 MS patients. RESULTS: Females had higher raw scores in the Symbol Digit Modalities Test (SDMT) (57.0 vs. 54.0; p < 0.001) and Categorical Verbal Learning Test (CVLT) (63.0 vs. 57.0; p < 0.001), but paradoxically, females evaluated their cognitive performance by MS Neuropsychological Questionnaire as being worse (16.6 vs 14.5, p = 0.004). Females had a trend for a weaker negative correlation between T2 lesion volume and SDMT ([Formula: see text] = - 0.37 in females vs. - 0.46 in men; interaction p = 0.038). On the other hand, women had a trend for a stronger correlation between Brain Parenchymal Fraction (BPF) and a visual memory test (Spearman's [Formula: see text] = 0.31 vs. 0.21; interaction p = 0.016). All these trends were not significant after correction for false discovery rate. CONCLUSIONS: Although, females consider their cognition as worse, males had at a group level slightly worse verbal memory and information processing speed. However, the sex differences in cognitive performance were smaller than the variability of scores within the same sex group. Brain MRI measures did not explain the sex differences in cognitive performance among MS patients.
- Keywords
- Brain atrophy, Cognition, Lesion volume, MRI, Multiple sclerosis, Sex,
- MeSH
- Cognition MeSH
- Cognitive Dysfunction * MeSH
- Cognition Disorders * diagnosis MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Brain diagnostic imaging MeSH
- Neuropsychological Tests MeSH
- Sex Characteristics MeSH
- Multiple Sclerosis * complications diagnostic imaging MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Impairment of higher language functions associated with natural spontaneous speech in multiple sclerosis (MS) remains underexplored. OBJECTIVES: We presented a fully automated method for discriminating MS patients from healthy controls based on lexical and syntactic linguistic features. METHODS: We enrolled 120 MS individuals with Expanded Disability Status Scale ranging from 1 to 6.5 and 120 age-, sex-, and education-matched healthy controls. Linguistic analysis was performed with fully automated methods based on automatic speech recognition and natural language processing techniques using eight lexical and syntactic features acquired from the spontaneous discourse. Fully automated annotations were compared with human annotations. RESULTS: Compared with healthy controls, lexical impairment in MS consisted of an increase in content words (p = 0.037), a decrease in function words (p = 0.007), and overuse of verbs at the expense of noun (p = 0.047), while syntactic impairment manifested as shorter utterance length (p = 0.002), and low number of coordinate clause (p < 0.001). A fully automated language analysis approach enabled discrimination between MS and controls with an area under the curve of 0.70. A significant relationship was detected between shorter utterance length and lower symbol digit modalities test score (r = 0.25, p = 0.008). Strong associations between a majority of automatically and manually computed features were observed (r > 0.88, p < 0.001). CONCLUSION: Automated discourse analysis has the potential to provide an easy-to-implement and low-cost language-based biomarker of cognitive decline in MS for future clinical trials.
- Keywords
- automated linguistic analysis, language, multiple sclerosis, nature language processing, spontaneous discourse,
- Publication type
- Journal Article MeSH
(1) Background: Cognitive deterioration is an important marker of disease activity in multiple sclerosis (MS). It is vital to detect cognitive decline as soon as possible. Cognitive deterioration can take the form of isolated cognitive decline (ICD) with no other clinical signs of disease progression present. (2) Methods: We investigated 1091 MS patients from the longitudinal GQ (Grant Quantitative) study, assessing their radiological, neurological, and neuropsychological data. Additionally, the confirmatory analysis was conducted. Clinical disease activity was defined as the presence of new relapse or disability worsening. MRI activity was defined as the presence of new or enlarged T2 lesions on brain MRI. (3) Results: Overall, 6.4% of patients experienced cognitive decline and 4.0% experienced ICD without corresponding clinical activity. The vast majority of cognitively worsening patients showed concomitant progression in other neurological and radiologic measures. There were no differences in disease severity between completely stable patients and cognitively worsening patients but with normal cognition at baseline. (4) Conclusions: Only a small proportion of MS patients experience ICD over short-term follow-up. Patients with severe MS are more prone to cognitive decline; however, patients with normal cognitive performance and mild MS might benefit from the early detection of cognitive decline the most.
- Keywords
- MRI, cognition, cognitive decline, disability, disease activity monitoring, isolated cognitive decline, multiple sclerosis, relapse,
- Publication type
- Journal Article MeSH
At two meetings of a Central European board of multiple sclerosis (MS) experts in 2018 and 2019 factors influencing daily treatment choices in MS, especially practice guidelines, biomarkers and burden of disease, were discussed. The heterogeneity of MS and the complexity of the available treatment options call for informed treatment choices. However, evidence from clinical trials is generally lacking, particularly regarding sequencing, switches and escalation of drugs. Also, there is a need to identify patients who require highly efficacious treatment from the onset of their disease to prevent deterioration. The recently published European Committee for the Treatment and Research in Multiple Sclerosis/European Academy of Neurology clinical practice guidelines on pharmacological management of MS cover aspects such as treatment efficacy, response criteria, strategies to address suboptimal response and safety concerns and are based on expert consensus statements. However, the recommendations constitute an excellent framework that should be adapted to local regulations, MS center capacities and infrastructure. Further, available and emerging biomarkers for treatment guidance were discussed. Magnetic resonance imaging parameters are deemed most reliable at present, even though complex assessment including clinical evaluation and laboratory parameters besides imaging is necessary in clinical routine. Neurofilament-light chain levels appear to represent the current most promising non-imaging biomarker. Other immunological data, including issues of immunosenescence, will play an increasingly important role for future treatment algorithms. Cognitive impairment has been recognized as a major contribution to MS disease burden. Regular evaluation of cognitive function is recommended in MS patients, although no specific disease-modifying treatment has been defined to date. Finally, systematic documentation of real-life data is recognized as a great opportunity to tackle unresolved daily routine challenges, such as use of sequential therapies, but requires joint efforts across clinics, governments and pharmaceutical companies.
- Keywords
- biomarkers, burden of disease, cognitive dysfunction, magnetic resonance imaging, multiple sclerosis, neurofilament,
- Publication type
- Journal Article MeSH
- Review MeSH
Introduction: Spinal cord (SC) pathology is strongly associated with disability in multiple sclerosis (MS). We aimed to evaluate the association between focal and diffuse SC abnormalities and spinal cord volume and to assess their contribution to physical disability in MS patients. Methods: This large sample-size cross-sectional study investigated 1,249 patients with heterogeneous MS phenotypes. Upper cervical-cord cross-sectional area (MUCCA) was calculated on an axial 3D-T2w-FatSat sequence acquired at 3T using a novel semiautomatic edge-finding tool. SC images were scored for the presence of sharply demarcated hyperintense areas (focal lesions) and homogenously increased signal intensity (diffuse changes). Patients were dichotomized according EDSS in groups with mild (EDSS up to 3.0) and moderate (EDSS ≥ 3.5) physical disability. Analysis of covariance was used to identify factors associated with dichotomized MUCCA. In binary logistic regression, the SC imaging parameters were entered in blocks to assess their individual contribution to risk of moderate disability. In order to assess the risk of combined SC damage in terms of atrophy and lesional pathology on disability, secondary analysis was carried out where patients were divided into four categories (SC phenotypes) according to median dichotomized MUCCA and presence/absence of focal and/or diffuse changes. Results: MUCCA was strongly associated with total intracranial volume, followed by presence of diffuse SC pathology, and disease duration. Compared to the reference group (normally appearing SC, MUCCA>median), patients with the most severe SC changes (SC affected with focal and/or diffuse lesions, MUCCA
- Keywords
- diffuse abnormalities, focal lesions, magnetic resonance imaging, spinal cord, spinal cord reserve,
- Publication type
- Journal Article MeSH
OBJECTIVES: To investigate spatial patterns of gray matter (GM) atrophy and their association with disability progression in patients with early relapsing-remitting multiple sclerosis (MS) in a longitudinal setting. METHODS: Brain MRI and clinical neurological assessments were obtained in 152 MS patients at baseline and after 10 years of follow-up. Patients were classified into those with confirmed disability progression (CDP) (n = 85) and those without CDP (n = 67) at the end of the study. An optimized, longitudinal source-based morphometry (SBM) pipeline, which utilizes independent component analysis, was used to identify eight spatial patterns of common GM volume co-variation in a data-driven manner. GM volume at baseline and rates of change were compared between patients with CDP and those without CDP. RESULTS: The identified patterns generally included structurally or functionally related GM regions. No significant differences were detected at baseline GM volume between the sub-groups. Over the follow-up, patients with CDP experienced a significantly greater rate of GM atrophy within two of the eight patterns, after correction for multiple comparisons (corrected p-values of 0.001 and 0.007). The patterns of GM atrophy associated with the development of CDP included areas involved in motor functioning and cognitive domains such as learning and memory. CONCLUSION: SBM analysis offers a novel way to study the temporal evolution of regional GM atrophy. Over 10 years of follow-up, disability progression in MS is related to GM atrophy in areas associated with motor and cognitive functioning.
- Keywords
- Atrophy, Disability, Gray matter, MRI, Multiple sclerosis,
- MeSH
- Atrophy MeSH
- Middle Aged MeSH
- Humans MeSH
- Longitudinal Studies MeSH
- Magnetic Resonance Imaging MeSH
- Brain Mapping MeSH
- Brain diagnostic imaging pathology MeSH
- Disease Progression * MeSH
- Multiple Sclerosis, Relapsing-Remitting diagnostic imaging pathology MeSH
- Gray Matter diagnostic imaging pathology MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
OBJECTIVE: To investigate whether the strength of the association between magnetic resonance imaging (MRI) metrics and cognitive outcomes differs between various multiple sclerosis subpopulations. METHODS: A total of 1052 patients were included in this large cross-sectional study. Brain MRI (T1 and T2 lesion volume and brain parenchymal fraction) and neuropsychological assessment (Brief International Cognitive Assessment for Multiple Sclerosis and Paced Auditory Serial Addition Test) were performed. RESULTS: Weak correlations between cognitive domains and MRI measures were observed in younger patients (age≤30 years; absolute Spearman's rho = 0.05-0.21), with short disease duration (<2 years; rho = 0.01-0.21), low Expanded Disability Status Scale [EDSS] (≤1.5; rho = 0.08-0.18), low T2 lesion volume (lowest quartile; <0.59 mL; rho = 0.01-0.20), and high brain parenchymal fraction (highest quartile; >86.66; rho = 0.01-0.16). Stronger correlations between cognitive domains and MRI measures were observed in older patients (age>50 years; rho = 0.24-0.50), with longer disease duration (>15 years; rho = 0.26-0.53), higher EDSS (≥5.0; rho = 0.23-0.39), greater T2 lesion volume (highest quartile; >5.33 mL; rho = 0.16-0.32), and lower brain parenchymal fraction (lowest quartile; <83.71; rho = 0.13-0.46). The majority of these observed results were confirmed by significant interactions (P ≤ 0.01) using continuous variables. INTERPRETATION: The association between structural brain damage and functional cognitive impairment is substantially weaker in multiple sclerosis patients with a low disease burden. Therefore, disease stage should be taken into consideration when interpreting associations between structural and cognitive measures in clinical trials, research studies, and clinical practice.
- Publication type
- Journal Article MeSH