Most cited article - PubMed ID 27879751
Influence of Cadmium(II) Ions and Brewery Sludge on Metallothionein Level in Earthworms (Eisenia fetida) - Bio- transforming of Toxic Wastes
Due to anthropogenic activities, heavy metals still represent a threat for various trophic levels. If aquatic animals are exposed to heavy metals, we can obviously observe considerable toxicity. It is well known that organisms treated with heavy metals synthesize low molecular mass compounds rich in cysteine. In this work the effects of cadmium chloride (2.5, 5, 7.5, 10 and 12.5 mg/L) on common carp (Cyprinus carpio) was investigated. We determined cadmium content in tissue of muscle, liver and kidney by atomic absorption spectrometry with electrothermal atomization and content of metallothionein (MT) in the same tissues by the Brdicka reaction. Electrochemical methods can be considered as suitable and sensitive tools for MT determination in carp tissues. Results of our study showed a gradually enhancing of cadmium content in muscle with time and dose of cadmium chloride in water. MT levels in liver reached both high levels (above 130 ng/g) in fish exposed to 2.5, 5 and 7.5 mg/L and low level (to 50 ng/g) in fish exposed to 10 and 12.5 mg/L of cadmium chloride. This finding confirms that the synthesis of metallothioneins and binding capacity of these proteins is restricted.
- Keywords
- Cyprinus carpio, bioaccumulation, heavy metals,
- Publication type
- Journal Article MeSH
Mycotoxins are secondary metabolites produced by microfungi that are capable of causing disease and death in humans and other animals. This work was aimed at investigation of influence of mouldy wheat contaminated by pathogenic fungi producing mycotoxins on metallothionein levels in hepatic tissue of rats. The rats were administrating feed mixtures with different contents of vitamins or naturally mouldy wheat for 28 days. It was found that the wheat contained deoxynivalenol (80 +/- 5 microg per kg of mouldy wheat), zearalenone (56 +/- 3 microg/kg), T2-toxin (20 +/- 2 microg/kg) and aflatoxins as a sum of B1, B2, G1 and G2 (3.9 +/- 0.2 microg/kg). Rats were fed diets containing 0, 33, 66 and 100% naturally moulded wheat. Control group 0, 33, 66 and 100% contained vitamins according to Nutrient Requirements of Rats (NRC). Other four groups (control group with vitamins, vit33, vit66 and vit100%) were fed on the same levels of mouldy wheat, also vitamins at levels 100% higher than the previous mixtures. We determined weight, feed conversion and performed dissection to observe pathological processes. Changes between control group and experimental groups exposed to influence of mouldy wheat and experimental groups supplemented by higher concentration of vitamins and mouldy wheat were not observed. Livers were sampled and did not demonstrate significant changes in morphology compared to control either. In the following experiments the levels of metallothionein as a marker of oxidative stress was determined. We observed a quite surprising trend in metallothionein levels in animals supplemented with increased concentration of vitamins. Its level enhanced with increasing content of mouldy wheat. It was possible to determine a statistically significant decline (p<0.05) between control group and groups of animals fed with 33, 66 and 100% mouldy wheat. It is likely that some mycotoxins presented in mouldy wheat are able to block the mechanism of metallothionein synthesis.
- Keywords
- Brdicka reaction, Differential pulse voltammetry, Fungi, Liver metabolism, Metallothionein, Mycotoxins, Rats, Vitamins,
- MeSH
- Aflatoxins chemistry toxicity MeSH
- Fungi isolation & purification metabolism MeSH
- Liver drug effects metabolism pathology MeSH
- Rats MeSH
- Metallothionein metabolism MeSH
- Oxidative Stress drug effects MeSH
- Rats, Wistar MeSH
- Triticum microbiology MeSH
- T-2 Toxin chemistry toxicity MeSH
- Body Weight drug effects MeSH
- Trichothecenes chemistry toxicity MeSH
- Vitamins pharmacology MeSH
- Zearalenone chemistry toxicity MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Aflatoxins MeSH
- deoxynivalenol MeSH Browser
- Metallothionein MeSH
- T-2 Toxin MeSH
- Trichothecenes MeSH
- Vitamins MeSH
- Zearalenone MeSH
Treatment strategies for tumour diseases are progressively focusing on personalization of medicine. However, this focus requires methods revealing the early general biological mechanisms, including the formation anti-cancer drugs' resistance. The low molecular mass protein metallothionein is thought to be the crucial for the formation of resistance in tumour treatment based on the platinum-cytostatics. The interactions between metallothionein (MT) and cisplatin were determined by the adsorptive transfer stripping technique coupled with the differential pulse votlammetry Brdickás reaction. The signals related to the MT-cisplatin complex appeared at -0.9 V. The formation of this complex depended on the time of interaction between cisplatin and MT. The complex formation was consequently confirmed by quartz crystal microbalance analyses. The formation of this complex was detectable even after a 20 s long interaction. Moreover, we detected presence of MT-cisplatin complex in the blood of male rats treated with this drug.
- Keywords
- Brdickás reaction, Cancer, Cisplatin, Metallothionein, Protein-Drug Interaction, Quartz Crystal Microbalance, Voltammetry,
- Publication type
- Journal Article MeSH
Editorial note concerning the "Utilization of Electrochemical Sensors and Biosensors in Biochemistry and Molecular Biology" special issue.
- Keywords
- Utilization of Electrochemical Sensors and Biosensors in Biochemistry and Molecular Biology,
- Publication type
- Editorial MeSH
Among wide spectrum of biomolecules induced by various stress factors low molecular mass protein called metallothionein (MT) is suitable for assessment of the heavy metal environmental pollution. The aim of this work was to determine the metallothionein and total thiols content in larvae of freshwater midges (Chironomus riparius) sampled from laboratory exposure to cadmium(II) ions and from field studies using differential pulse voltammetry Brdicka reaction. Unique electrochemical instrument, stationary electrochemical analyser Autolab coupled with autosampler, was utilized for the analysis of the samples. The detection limit for MT was evaluated as 5 nM. The larvae exposed to two doses (50 ng/g or 50 μg/g) of cadmium(II) ions for fifteen days under laboratory controlled conditions were at the end of the exposure killed, homogenized and analysed. MT content in control samples was 1.2 μM, in larvae exposed to 50 ng Cd/g it was 2.0 μM and in larvae exposed to 50 μg Cd/g 2.9 μM. Moreover at field study chironomid larvae as well as sediment samples have been collected from eight field sites with different levels of pollution by heavy. The metals content (chromium, nickel, copper, zinc, arsenic, molybdenum, cadmium, tin and lead) in the sediment and or MT content in the chironomid larvae were determined by inductively coupled plasma mass spectrometry or Brdicka reaction, respectively.
- Keywords
- Brdicka Reaction, Catalytic Hydrogen Evolution, Differential Pulse Voltammetry, Environmental Marker, Heavy Metal Contamination., Metallothionein, Thiols,
- Publication type
- Journal Article MeSH
In the present paper potato plants were cultivated in the presence of ammonium sulphate or elemental sulphur supplementation into the soil to reveal the effects of different sulphur forms on content of nitrogen, phosphorus, potassium, calcium, magnesium and sulphur, and yield of tubers. During the investigation of the influence of different sulphur forms on yield of potato tubers we did not observe significant changes. Average weight of tubers of control plants per one experimental pot was 355 g. Application of sulphur in both forms resulted in moderate potato tubers weight reduction per one experimental pot compared to control group; average value ranged from 320 to 350 g per one experimental pot. Further we treated the plants with two different supplementation of sulphur with cadmium(II) ions (4 mg of cadmium(II) acetate per kilogram of the soil). The significantly lowest cadmium content (p < 0.05) was determined in tissues of plants treated with the highest dosage of elemental sulphur (0.64 mg Cd/kg) compared to control plants (0.82 mg Cd/kg). We also aimed our attention on the cadmium content in proteins, lipids or soluble carbohydrates and ash. Application of sulphate as well as elemental sulphur resulted in significant cadmium content reduction in lipid fraction compared to control plants. In addition to this we quantified content of low molecular mass thiols in potatoes tissues. To determine the thiols content we employed differential pulse voltammetry Brdicka reaction. After twelve days of the treatment enhancing of thiols level was observed in all experimental groups regardless to applied sulphur form and its concentration. Finally we evaluated the effect of sulphur supplementation on Phytophora infestans infection of potato plants.
In the paper we utilized the adsorptive transfer stripping differential pulse voltammetry Brdicka reaction for the determination of metallothioneins (MT) in melanoma cells, animal melanoma tissues (MeLiM miniature pig) and blood serum of patients with malignant melanoma. Primarily we attempted to investigate the influence of dilution of real sample on MT electrochemical response. Dilution of samples of 1 000 times was chosen the most suitable for determination of MT level in biological samples. Then we quantified the MT level in the melanoma cells, the animal melanoma tissues and the blood serum samples. The MT content in the cells varied within the range from 4.2 to 11.2 μM. At animal melanoma tissues (melanomas localized on abdomen, back limb and dorsum) the highest content of MT was determined in the tumour sampled on the back of the animal and was nearly 500 μg of MTs per gram of a tissue. We also quantified content of MT in metastases, which was found in liver, spleen and lymph nodes. Moreover the average MT level in the blood serum samples from patients with melanoma was 3.0 ± 0.8 μM. MT levels determined at melanoma samples were significantly (p < 0.05) higher compared to control ones at cells, tissues and blood serum.
- Keywords
- Adsorptive Transfer Stripping Technique, Animal Tissue, Brdicka Reaction, Cell, Differential Pulse Voltammetry, Human blood serum, Metallothionein, Protein, Tumour Marker,
- Publication type
- Journal Article MeSH
Biochemical analysis of organisms to assess exposure to environmental contaminants is of great potential use. Biochemical markers, specifically liver enzymes of the first and the second phase of xenobiotic transformation - cytochrome P450 (CYP 450), ethoxyresorufin-O-deethylase (EROD), glutathione-S-transferase (GST) and tripeptide reduced glutathione (GSH) - were used to assess contamination of the aquatic environment at 12 locations near the mouths of major rivers in the Czech Republic. These rivers were the Lužnice, Otava, Sázava, Berounka, Vltava, Labe, Ohře, Svratka, Dyje, Morava and Odra. The indicator species selected was the Chub (Leuciscus cephalus L.). The highest levels of CYP 450 and EROD catalytic activity were found in livers of fish from the Labe (Obříství) (0.32±0.10 nmol mg-1 protein and 1061.38±545.51 pmol min-1 mg-1 protein, respectively). The highest levels of GST catalytic activity and GSH content were found in fish from the Otava (35.39±13.35 nmol min-1 mg-1 protein and 4.29±2.10 nmol GSH mg-1 protein, respectively). They were compared with levels of specific inductors of these biochemical markers in muscle. The results confirmed contamination of some river locations (Labe Obříství, Svratka).
- Keywords
- Biochemical markers, chub (Leuciscus cephalus L.), organic pollutants, river pollution,
- Publication type
- Journal Article MeSH