Most cited article - PubMed ID 27932998
Gene Expression Dynamics in Major Endocrine Regulatory Pathways along the Transition from Solitary to Social Life in a Bumblebee, Bombus terrestris
Insect vitellogenins are an intriguing class of complex proteins. They primarily serve as a source of energy for the developing embryo in insect eggs. Vitellogenesis is a complex hormonally and neurally controlled process that command synthesis of vitellogenin molecules and ensures their transport from the female fat bodies or ovarial cells into eggs. The representatives of all insect hormones such as juvenile hormones, ecdysteroids, and neurohormones participate in vitellogenesis, but juvenile hormones (most insect species) and ecdysteroids (mostly Diptera) play the most important roles in the process. Strikingly, not only insect females, but also males have been reported to synthesize vitellogenins indicating their further utility in the insect body. Indeed, it has recently been found that vitellogenins perform a variety of biological functions in the insect body. They participate in defense reactions against entomopathogens such as nematodes, fungi, and bacteria, as well as against venoms such as the honeybee Apis mellifera venom. Interestingly, vitellogenins are also present in the venom of the honeybee itself, albeit their exact role is unknown; they most likely increase the efficacy of the venom in the victim's body. Within the bee's body vitellogenins contribute to the lifespan regulation as anti-aging factor acting under tight social interactions and hormonal control. The current minireview covers all of these functions of vitellogenins and portrays them as biologically active substances that play a variety of significant roles in both insect females and males, and not only acting as passive energy sources for developing embryo.
- MeSH
- Ecdysteroids * metabolism MeSH
- Insecta metabolism MeSH
- Juvenile Hormones metabolism MeSH
- Ovary metabolism MeSH
- Vitellogenins * MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Ecdysteroids * MeSH
- Juvenile Hormones MeSH
- Vitellogenins * MeSH
Bumblebees are important pollinators of plants worldwide and they are kept for commercial pollination. By studying the process of oogenesis, we can understand their ontogenetic developmental strategy and reproduction. We describe the anatomy of the ovary of the bumblebee Bombus terrestris using 3D reconstruction by confocal microscopy. We found that an oocyte is accompanied by 63 endopolyploidy nurse cells. The number of nurse cells nuclei decreased during oogenesis and the cells are finally absorbed by the oocyte. We monitored the rate of DNA synthesis in vivo during 12 h in ovaries, fat body, and pericardial cells in B. terrestris queens and workers of different ages. The DNA replication activity was detected on the basis of visualization of incorporated 5-ethynyl-2'-deoxyuridine. DNA synthesis detected in differentiated nurse cells indicated endoreplication of nuclei. The dynamics of mitotic activity varied among different ages and statuses of queens. In 3- to 8-day-old virgin queens, intense mitotic activity was observed in all tissue types investigated. This might be related to the initial phase of oogenesis and the development of the hepato-nephrotic system. In 15- to 20-day-old mated pre-diapause queens, DNA synthesis was exclusively observed in the ovaries, particularly in the germarium and the anterior part of the vitellarium. In 1-year-old queens, replication occurred only in the peritoneal sheath of ovaries and in several cells of the fat body. The similar DNA synthesis patterns in the ovaries of mated pre-diapause queens, ovipositing workers, and non-egg-laying workers show that mitotic activity is related not only to age but also to the stage of ovarian maturation and is relatively independent of caste affiliation.
- Keywords
- Bombus terrestris, DNA endoreplication, EdU detection, endopolypoidic nurse cells, fat body, ovaries, pericardial cells,
- Publication type
- Journal Article MeSH
Evidence accumulates that the functional plasticity of insulin and insulin-like growth factor signaling in insects could spring, among others, from the multiplicity of insulin receptors (InRs). Their multiple variants may be implemented in the control of insect polyphenism, such as wing or caste polyphenism. Here, we present a comprehensive phylogenetic analysis of insect InR sequences in 118 species from 23 orders and investigate the role of three InRs identified in the linden bug, Pyrrhocoris apterus, in wing polymorphism control. We identified two gene clusters (Clusters I and II) resulting from an ancestral duplication in a late ancestor of winged insects, which remained conserved in most lineages, only in some of them being subject to further duplications or losses. One remarkable yet neglected feature of InR evolution is the loss of the tyrosine kinase catalytic domain, giving rise to decoys of InR in both clusters. Within the Cluster I, we confirmed the presence of the secreted decoy of insulin receptor in all studied Muscomorpha. More importantly, we described a new tyrosine kinase-less gene (DR2) in the Cluster II, conserved in apical Holometabola for ∼300 My. We differentially silenced the three P. apterus InRs and confirmed their participation in wing polymorphism control. We observed a pattern of Cluster I and Cluster II InRs impact on wing development, which differed from that postulated in planthoppers, suggesting an independent establishment of insulin/insulin-like growth factor signaling control over wing development, leading to idiosyncrasies in the co-option of multiple InRs in polyphenism control in different taxa.
- Keywords
- decoy of insulin receptor, gene structure, insects, insulin receptor, insulin signaling, wing polyphenism,
- MeSH
- Biological Evolution * MeSH
- Gene Duplication MeSH
- Heteroptera genetics growth & development MeSH
- Insecta anatomy & histology genetics MeSH
- Wings, Animal anatomy & histology growth & development MeSH
- Receptor, Insulin genetics MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
- Names of Substances
- Receptor, Insulin MeSH