Nejvíce citovaný článek - PubMed ID 28035800
In Situ Generation of Pd-Pt Core-Shell Nanoparticles on Reduced Graphene Oxide (Pd@Pt/rGO) Using Microwaves: Applications in Dehalogenation Reactions and Reduction of Olefins
In view of their unique characteristics and properties, silver nanomaterials (Ag NMs) have been used not only in the field of nanomedicine but also for diverse advanced catalytic technologies. In this comprehensive review, light is shed on general synthetic approaches encompassing chemical reduction, sonochemical, microwave, and thermal treatment among the preparative methods for the syntheses of Ag-based NMs and their catalytic applications. Additionally, some of the latest innovative approaches such as continuous flow integrated with MW and other benign approaches have been emphasized that ultimately pave the way for sustainability. Moreover, the potential applications of emerging Ag NMs, including sub nanomaterials and single atoms, in the field of liquid-phase catalysis, photocatalysis, and electrocatalysis as well as a positive role of Ag NMs in catalytic reactions are meticulously summarized. The scientific interest in the synthesis and applications of Ag NMs lies in the integrated benefits of their catalytic activity, selectivity, stability, and recovery. Therefore, the rise and journey of Ag NM-based catalysts will inspire a new generation of chemists to tailor and design robust catalysts that can effectively tackle major environmental challenges and help to replace noble metals in advanced catalytic applications. This overview concludes by providing future perspectives on the research into Ag NMs in the arena of electrocatalysis and photocatalysis.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In view of the increasing applications of nanocatalysis in chemical transformations, this article illustrates recent advances on the use of nanocatalysts for an important reduction reaction, the hydrogenation of nitroaromatics to significant aminoaromatics with aqueous NaBH4 solution; the utility of mono- and multi-metal nanocatalysts with special emphasis on heterogeneous nanocatalysts are included. A progressive trend on the applicability of nanocatalysts is also incorporated with large scale application and their sustainable recyclization and reuse utilizing supported and magnetic nanocatalysts; representative methods for the synthesis of such reusable nanocatalysts are featured.
- Klíčová slova
- Hydrogenation, aminoaromatics, green transformations, nanocatalysts, nitroaromatics, reduction,
- Publikační typ
- časopisecké články MeSH
A low-cost nanocomposite catalyst containing copper oxide (CuO) nanoparticles (NPs) on graphene oxide (GO) was fabricated by a facile hydrothermal self-assembly process. The segregated CuO NPs and GO exhibited negligible catalytic activities for the reduction of nitroaromatics. However, their hybrid composite accomplished facile reduction with high conversions for several substituted nitroaromatics in aqueous NaBH4 solution; synergetic coupling effect of CuO NPs with GO in the nanocomposite catalyst provided excellent catalytic activity. The nanocomposite catalyst could be separated from the reaction mixture and recycled consecutively.
- Klíčová slova
- Copper oxide, Graphene oxide, Hydrogenation, Hydrothermal, Synergistic effect,
- Publikační typ
- časopisecké články MeSH