Nejvíce citovaný článek - PubMed ID 28036383
Structural and Catalytic Properties of S1 Nuclease from Aspergillus oryzae Responsible for Substrate Recognition, Cleavage, Non-Specificity, and Inhibition
Nucleases of the S1/P1 family have important applications in biotechnology and molecular biology. We have performed structural analyses of SmNuc1 nuclease from Stenotrophomonas maltophilia, including RNA cleavage product binding and mutagenesis in a newly discovered flexible Arg74-motif, involved in substrate binding and product release and likely contributing to the high catalytic rate. The Arg74Gln mutation shifts substrate preference towards RNA. Purine nucleotide binding differs compared to pyrimidines, confirming the plasticity of the active site. The enzyme-product interactions indicate a gradual, stepwise product release. The activity of SmNuc1 towards c-di-GMP in crystal resulted in a distinguished complex with the emerging product 5'-GMP. This enzyme from an opportunistic pathogen relies on specific architecture enabling high performance under broad conditions, attractive for biotechnologies.
- Klíčová slova
- Stenotrophomonas maltophilia, RNA, S1/P1 nuclease, X‐ray crystallography, c‐di‐GMP cleavage,
- MeSH
- bakteriální proteiny metabolismus chemie genetika MeSH
- guanosinmonofosfát cyklický metabolismus analogy a deriváty chemie MeSH
- katalytická doména * MeSH
- krystalografie rentgenová MeSH
- molekulární modely MeSH
- RNA metabolismus chemie genetika MeSH
- Stenotrophomonas maltophilia * enzymologie genetika metabolismus MeSH
- substrátová specifita MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- guanosinmonofosfát cyklický MeSH
- RNA MeSH
Unlike any protein studied so far, the active site of bilirubin oxidase from Myrothecium verrucaria contains a unique type of covalent link between tryptophan and histidine side chains. The role of this post-translational modification in substrate binding and oxidation is not sufficiently understood. Our structural and mutational studies provide evidence that this Trp396-His398 adduct modifies T1 copper coordination and is an important part of the substrate binding and oxidation site. The presence of the adduct is crucial for oxidation of substituted phenols and it substantially influences the rate of oxidation of bilirubin. Additionally, we bring the first structure of bilirubin oxidase in complex with one of its products, ferricyanide ion, interacting with the modified tryptophan side chain, Arg356 and the active site-forming loop 393-398. The results imply that structurally and chemically distinct types of substrates, including bilirubin, utilize the Trp-His adduct mainly for binding and to a smaller extent for electron transfer.
- MeSH
- bilirubin metabolismus MeSH
- Hypocreales metabolismus MeSH
- konformace proteinů MeSH
- molekulární modely * MeSH
- oxidace-redukce MeSH
- oxidoreduktasy působící na CH-CH vazby metabolismus MeSH
- transport elektronů fyziologie MeSH
- vazba proteinů fyziologie MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bilirubin oxidase MeSH Prohlížeč
- bilirubin MeSH
- oxidoreduktasy působící na CH-CH vazby MeSH