Nejvíce citovaný článek - PubMed ID 28221353
From helical to planar chirality by on-surface chemistry
Flattening helices while keeping the handedness: On-surface cyclodehydrogenation of bishelicene enantiomers leads stereospecifically to (M,M) and (P,P) chiral planar polyaromatic hydrocarbons. This is followed by their homochiral aggregation into a 2D conglomerate. Thermally induced cyclodehydrogenation proceeds stereospecifically to chiral, planar coronocoronene. Such a reaction is a special example of topochemistry in which enantiospecific conversion is supported by the alignment of the reactant by the surface.
- Klíčová slova
- chirality, helicenes, polyaromatic hydrocarbons, scanning tunneling microscopy, surface chemistry,
- Publikační typ
- časopisecké články MeSH
We investigate the possibility of functionalizing Au tips by N2O molecules deposited on a Au(111) surface and their further use for imaging with submolecular resolution. First, we characterize the adsorption of the N2O species on Au(111) by means of atomic force microscopy with CO-functionalized tips and density functional theory (DFT) simulations. Subsequently we devise a method of attaching a single N2O to a metal tip apex and benchmark its high-resolution imaging and spectroscopic capabilities using FePc molecules. Our results demonstrate the feasibility of high-resolution imaging. However, we find an inherent asymmetry of the N2O probe-particle adsorption on the tip apex, in contrast to a CO tip reference. These findings are consistent with DFT calculations of the N2O- and CO tip apexes.
- Klíčová slova
- Au(111), atomic force microscopy, carbon monoxide, functionalization, high resolution, nitrous oxide, submolecular resolution,
- Publikační typ
- časopisecké články MeSH
On-surface synthesis is an emerging approach to obtain, in a single step, precisely defined chemical species that cannot be obtained by other synthetic routes. The control of the electronic structure of organic/metal interfaces is crucial for defining the performance of many optoelectronic devices. A facile on-surface chemistry route has now been used to synthesize the strong electron-acceptor organic molecule quinoneazine directly on a Cu(110) surface, via thermally activated covalent coupling of para-aminophenol precursors. The mechanism is described using a combination of in situ surface characterization techniques and theoretical methods. Owing to a strong surface-molecule interaction, the quinoneazine molecule accommodates 1.2 electrons at its carbonyl ends, inducing an intramolecular charge redistribution and leading to partial conjugation of the rings, conferring azo-character at the nitrogen sites.
- Klíčová slova
- ab initio calculations, charge transfer, photoelectron spectroscopy, scanning probe microscopy, surface chemistry,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH