Nejvíce citovaný článek - PubMed ID 28252804
Genotype specificity among hosts, pathogens, and beneficial microbes influences the strength of symbiont-mediated protection
Gut microbiota (GM) often exhibit variation between different host species and co-divergence with hosts' phylogeny. Identifying these patterns is a key for understanding the mechanisms that shaped symbiosis between GM and its hosts. Therefore, both GM-host species specificity and GM-host co-divergence have been investigated by numerous studies. However, most of them neglected a possibility that different groups of bacteria within GM can vary in the tightness of their association with the host. Consequently, unlike most of these studies, we aimed to directly address how the strength of GM-host species specificity and GM-host co-divergence vary across different GM clades. We decomposed GM communities of 52 passerine species (394 individuals), characterized by 16S rRNA amplicon sequence variant (ASV) profiles, into monophyletic Binned Taxonomic units (BTUs). Subsequently, we analyzed strength of host species specificity and correlation with host phylogeny separately for resulting BTUs. We found that most BTUs exhibited significant host-species specificity in their composition. Notably, BTUs exhibiting high host-species specificity comprised bacterial taxa known to impact host's physiology and immune system. However, BTUs rarely displayed significant co-divergence with host phylogeny, suggesting that passerine GM evolution is not shaped primarily through a shared evolutionary history between the host and its gut microbes.
- Klíčová slova
- 16S rRNA, co‐divergence, gut microbiota, metabarcoding, passerines,
- Publikační typ
- časopisecké články MeSH
Microbial organisms are ubiquitous in nature and often form communities closely associated with their host, referred to as the microbiome. The microbiome has strong influence on species interactions, but microbiome studies rarely take interactions between hosts into account, and network interaction studies rarely consider microbiomes. Here, we propose to use metacommunity theory as a framework to unify research on microbiomes and host communities by considering host insects and their microbes as discretely defined "communities of communities" linked by dispersal (transmission) through biotic interactions. We provide an overview of the effects of heritable symbiotic bacteria on their insect hosts and how those effects subsequently influence host interactions, thereby altering the host community. We suggest multiple scenarios for integrating the microbiome into metacommunity ecology and demonstrate ways in which to employ and parameterize models of symbiont transmission to quantitatively assess metacommunity processes in host-associated microbial systems. Successfully incorporating microbiota into community-level studies is a crucial step for understanding the importance of the microbiome to host species and their interactions.
- Klíčová slova
- bacteria, dispersal, heritable, insect, metacommunity, microbiome, species interactions, symbiont, transmission,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Environmental stressors can be key drivers of phenotypes, including reproductive strategies and morphological traits. The response to stress may be altered by the presence of microbial associates. For example, in aphids, facultative (secondary) bacterial symbionts can provide protection against natural enemies and stress induced by elevated temperatures. Furthermore, aphids exhibit phenotypic plasticity, producing winged (rather than wingless) progeny that may be better able to escape danger, and the combination of these factors improves the response to stress. How symbionts and phenotypic plasticity, both of which shape aphids' stress response, influence one another, and together influence host fitness, remains unclear. In this study, we investigate how environmental stressors drive shifts in fecundity and winged/wingless offspring production, and how secondary symbionts influence the process. We induced production of winged offspring through distinct environmental stressors, including exposure to aphid alarm pheromone and crowding, and, in one experiment, we assessed whether the aphid response is influenced by host plant. In the winged morph, energy needed for wing maintenance may lead to trade-offs with other traits, such as reproduction or symbiont maintenance. Potential trade-offs between symbiont maintenance and fitness have been proposed but have not been tested. Thus, beyond studying the production of offspring of alternative morphs, we also explore the influence of symbionts across wing/wingless polyphenism as well as symbiont interaction with cross-generational impacts of environmental stress on reproductive output. All environmental stressors resulted in increased production of winged offspring and shifts in fecundity rates. Additionally, in some cases, aphid host-by-symbiont interactions influenced fecundity. Stress on first-generation aphids had cross-generational impacts on second-generation adults, and the impact on fecundity was further influenced by the presence of secondary symbionts and presence/absence of wings. Our study suggests a complex interaction between beneficial symbionts and environmental stressors. Winged aphids have the advantage of being able to migrate out of danger with more ease, but energy needed for wing production and maintenance may come with reproductive costs for their mothers and for themselves, where in certain cases, these costs are altered by secondary symbionts.
- Klíčová slova
- environmental stressors, life history, pea aphid, phenotypic plasticity, symbiosis, trade-offs,
- MeSH
- Bacteria MeSH
- hrách setý MeSH
- křídla zvířecí MeSH
- mšice * MeSH
- symbióza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH