Most cited article - PubMed ID 28394364
Human adipose tissue accumulation is associated with pro-inflammatory changes in subcutaneous rather than visceral adipose tissue
The pro-inflammatory status of adipose tissue (AT) has been found to be related to reverse cholesterol transport (RCT) from peritoneal macrophages. However, this finding was made in experimental models using induced peritonitis and isolated peritoneal macrophages of animals. This experimental relationship is in agreement with RCT changes in man in two extreme situations, sepsis or cardiovascular complications. Given the above, we sought to test RTC in relationship to macrophage polarization in the visceral AT (VAT) of living kidney donors (LKDs) and the effect of conditioned media obtained from their AT. The influence of ATCM on CE capacity was first assessed in an experiment where standard plasma was used as cholesterol acceptor from [14C] cholesterol labeled THP-1. Conditioned media as a product of LKDs' incubated AT showed no effect on CE. Likewise, we did not find any effect of individual plasma of LKDs on CE when individual plasma of LKDs were used as acceptors. On the other hand, we documented an effect of LKDs' adipose cell size on CE. Our results indicate that the pro-inflammatory status of human AT is not likely induced by disrupted RCT but might be influenced by the metabolic status of LKDs' adipose tissue.
- MeSH
- Cholesterol * metabolism MeSH
- Culture Media, Conditioned metabolism pharmacology MeSH
- Humans MeSH
- Macrophages metabolism MeSH
- Adipose Tissue * metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cholesterol * MeSH
- Culture Media, Conditioned MeSH
Residential macrophages in adipose tissue play a pivotal role in the development of inflammation not only within this tissue, but also affect the proinflammatory status of the whole body. Data on human adipose tissue inflammation and the role of macrophages are rather scarce. We previously documented that the proportion of proinflammatory macrophages in human adipose tissue correlates closely with non-HDL cholesterol concentrations. We hypothesized that this is due to the identical influence of diet on both parameters and decided to analyze the fatty acid spectrum in cell membrane phospholipids of the same individuals as a parameter of the diet consumed. Proinflammatory and anti-inflammatory macrophages were isolated from human adipose tissue (n = 43) and determined by flow cytometry as CD14+CD16+CD36high and CD14+CD16-CD163+, respectively. The spectrum of fatty acids in phospholipids in the cell membranes of specimens of the same adipose tissue was analyzed, and the proportion of proinflammatory macrophage increased with the proportions of palmitic and palmitoleic acids. Contrariwise, these macrophages decreased with increasing alpha-linolenic acid, total n-3 fatty acids, n-3/n-6 ratio, and eicosatetraenoic acid. A mirror picture was documented for the proportion of anti-inflammatory macrophages. The dietary score, obtained using a food frequency questionnaire, documented a positive relation to proinflammatory macrophages in individuals who consumed predominantly vegetable fat and fish, and individuals who consumed diets based on animal fat without fish and nut consumption. he present data support our hypothesis that macrophage polarization in human visceral adipose tissue is related to fatty acid metabolism, cell membrane composition, and diet consumed. It is suggested that fatty acid metabolism might participate also in inflammation and the risk of developing cardiovascular disease.
- Keywords
- inflammation, macrophages, membrane, nutrition, omega-3 fatty acids,
- MeSH
- Cell Membrane chemistry MeSH
- Diet MeSH
- Adult MeSH
- Phospholipids chemistry MeSH
- Middle Aged MeSH
- Humans MeSH
- Macrophages physiology MeSH
- Fatty Acids chemistry MeSH
- Adipose Tissue cytology MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Phospholipids MeSH
- Fatty Acids MeSH