Nejvíce citovaný článek - PubMed ID 28406455
Subcellular Localization of Arabidopsis Pathogenesis-Related 1 (PR1) Protein
Small secreted proteins play an important role in plant development, as well as in reactions to changes in the environment. In Arabidopsis thaliana, they are predominantly members of highly expanded families, such as the pathogenesis-related (PR) 1-like protein family, whose most studied member PR1 is involved in plant defense responses by a so far unknown mechanism, or Clavata3/Endosperm Surrounding Region (CLE) protein family, whose members' functions in the development are well described. Our survey of the existing literature for the two families showed a lack of details on their localization, trafficking, and exocytosis. Therefore, in order to uncover the modes of their secretion, we tested the hypothesis that a direct link between the secreted cargoes and the secretion regulators such as Rab GTPases, SNAREs, and exocyst subunits could be established using in silico co-expression and clustering approaches. We employed several independent techniques to uncover that only weak co-expression links could be found for limited numbers of secreted cargoes and regulators. We propose that there might be particular spatio-temporal requirements for PR1 and CLE proteins to be synthesized and secreted, and efforts to experimentally cover these discrepancies should be invested along with functional studies.
- Klíčová slova
- CLE, PR1, SNARE, co-expression, exocyst, secretion,
- MeSH
- Arabidopsis * genetika metabolismus MeSH
- cytoplazma metabolismus MeSH
- exocytóza fyziologie MeSH
- proteiny huseníčku * genetika metabolismus MeSH
- proteiny SNARE metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny huseníčku * MeSH
- proteiny SNARE MeSH
The pathogenesis-related 1 (PR1) proteins are members of the cross-kingdom conserved CAP superfamily (from Cysteine-rich secretory protein, Antigen 5, and PR1 proteins). PR1 mRNA expression is frequently used for biotic stress monitoring in plants; however, the molecular mechanisms of its cellular processing, localization, and function are still unknown. To analyse the localization and immunity features of Arabidopsis thaliana PR1, we employed transient expression in Nicotiana benthamiana of the tagged full-length PR1 construct, and also disrupted variants with C-terminal truncations or mutations. We found that en route from the endoplasmic reticulum, the PR1 protein transits via the multivesicular body and undergoes partial proteolytic processing, dependent on an intact C-terminal motif. Importantly, only nonmutated or processing-mimicking variants of PR1 are secreted to the apoplast. The C-terminal proteolytic cleavage releases a protein fragment that acts as a modulator of plant defence responses, including localized cell death control. However, other parts of PR1 also have immunity potential unrelated to cell death. The described modes of the PR1 contribution to immunity were found to be tissue-localized and host plant ontogenesis dependent.
- Klíčová slova
- extracellular proteins, multivesicular bodies, pathogenesis-related 1, plant immunity, vesicular trafficking,
- MeSH
- Arabidopsis * metabolismus MeSH
- endoplazmatické retikulum metabolismus MeSH
- fyziologický stres MeSH
- imunita rostlin genetika MeSH
- proteiny huseníčku * metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- tabák genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny huseníčku * MeSH
SH3P2 (At4g34660), an Arabidopsis thaliana SH3 and Bin/amphiphysin/Rvs (BAR) domain-containing protein, was reported to have a specific role in cell plate assembly, unlike its paralogs SH3P1 (At1g31440) and SH3P3 (At4g18060). SH3P family members were also predicted to interact with formins-evolutionarily conserved actin nucleators that participate in microtubule organization and in membrane-cytoskeleton interactions. To trace the origin of functional specialization of plant SH3Ps, we performed phylogenetic analysis of SH3P sequences from selected plant lineages. SH3Ps are present in charophytes, liverworts, mosses, lycophytes, gymnosperms, and angiosperms, but not in volvocal algae, suggesting association of these proteins with phragmoplast-, but not phycoplast-based cell division. Separation of three SH3P clades, represented by SH3P1, SH3P2, and SH3P3 of A. thaliana, appears to be a seed plant synapomorphy. In the yeast two hybrid system, Arabidopsis SH3P3, but not SH3P2, binds the FH1 and FH2 domains of the formin FH5 (At5g54650), known to participate in cytokinesis, while an opposite binding specificity was found for the dynamin homolog DRP1A (At5g42080), confirming earlier findings. This suggests that the cytokinetic role of SH3P2 is not due to its interaction with FH5. Possible determinants of interaction specificity of SH3P2 and SH3P3 were identified bioinformatically.
- Klíčová slova
- cell plate, cytokinesis, evolution, formin, interaction specificity, phylogeny,
- MeSH
- Arabidopsis MeSH
- cytokineze * MeSH
- dynaminy metabolismus MeSH
- fylogeneze MeSH
- molekulární evoluce * MeSH
- proteiny huseníčku klasifikace genetika metabolismus MeSH
- transportní proteiny klasifikace genetika metabolismus MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dynaminy MeSH
- proteiny huseníčku MeSH
- SH3P2 protein, Arabidopsis MeSH Prohlížeč
- transportní proteiny MeSH