Most cited article - PubMed ID 28465191
Activity of cholinesterases in a young and healthy middle-European population: Relevance for toxicology, pharmacology and clinical praxis
Six novel brominated bis-pyridinium oximes were designed and synthesized to increase their nucleophilicity and reactivation ability of phosphorylated acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Their pKa was valuably found lower to parent non-halogenated oximes. Stability tests showed that novel brominated oximes were stable in water, but the stability of di-brominated oximes was decreased in buffer solution and their degradation products were prepared and characterized. The reactivation screening of brominated oximes was tested on AChE and BChE inhibited by organophosphorus surrogates. Two mono-brominated oximes reactivated AChE comparably to non-halogenated analogues, which was further confirmed by reactivation kinetics. The acute toxicity of two selected brominated oximes was similar to commercially available oxime reactivators and the most promising brominated oxime was tested in vivo on sarin- and VX-poisoned rats. This brominated oxime showed interesting CNS distribution and significant reactivation effectiveness in blood. The same oxime resulted with the best protective index for VX-poisoned rats.
- Keywords
- Cholinesterase, Nerve agent, Nucleophile, Organophosphate, Oxime, Reactivation,
- MeSH
- Acetylcholinesterase * metabolism drug effects MeSH
- Butyrylcholinesterase * metabolism MeSH
- Chemical Warfare Agents toxicity MeSH
- Cholinesterase Inhibitors * toxicity pharmacology MeSH
- Halogenation MeSH
- Rats MeSH
- Nerve Agents * toxicity MeSH
- Organothiophosphorus Compounds * toxicity MeSH
- Oximes * pharmacology chemistry MeSH
- Rats, Wistar MeSH
- Pyridinium Compounds pharmacology MeSH
- Cholinesterase Reactivators * pharmacology chemistry MeSH
- Sarin * toxicity MeSH
- Drug Stability MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Acetylcholinesterase * MeSH
- Butyrylcholinesterase * MeSH
- Chemical Warfare Agents MeSH
- Cholinesterase Inhibitors * MeSH
- Nerve Agents * MeSH
- Organothiophosphorus Compounds * MeSH
- Oximes * MeSH
- Pyridinium Compounds MeSH
- Cholinesterase Reactivators * MeSH
- Sarin * MeSH
- VX MeSH Browser
Antidotes against organophosphates often possess physicochemical properties that mitigate their passage across the blood-brain barrier. Cucurbit[7]urils may be successfully used as a drug delivery system for bisquaternary oximes and improve central nervous system targeting. The main aim of these studies was to elucidate the relationship between cucurbit[7]uril, oxime K027, atropine, and paraoxon to define potential risks or advantages of this delivery system in a complex in vivo system. For this reason, in silico (molecular docking combined with umbrella sampling simulation) and in vivo (UHPLC-pharmacokinetics, toxicokinetics; acetylcholinesterase reactivation and functional observatory battery) methods were used. Based on our results, cucurbit[7]urils affect multiple factors in organophosphates poisoning and its therapy by (i) scavenging paraoxon and preventing free fraction of this toxin from entering the brain, (ii) enhancing the availability of atropine in the central nervous system and by (iii) increasing oxime passage into the brain. In conclusion, using cucurbit[7]urils with oximes might positively impact the overall treatment effectiveness and the benefits can outweigh the potential risks.
- Keywords
- CB7, K027, acetylcholinesterase, antidote, cucurbit[7]uril, cucurbiturils, in vivo, mouse, paraoxon, pesticide,
- MeSH
- Atropine chemistry MeSH
- Blood-Brain Barrier MeSH
- Imidazoles chemistry MeSH
- Mice MeSH
- Oximes chemistry MeSH
- Paraoxon chemistry toxicity MeSH
- Computer Simulation MeSH
- Bridged-Ring Compounds chemistry MeSH
- Pyridinium Compounds chemistry MeSH
- Cholinesterase Reactivators chemistry toxicity MeSH
- Molecular Docking Simulation MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- 1-(4-hydroxyiminomethylpyridinium)-3-(carbamoylpyridinium) propane dibromide MeSH Browser
- Atropine MeSH
- cucurbit(7)uril MeSH Browser
- Imidazoles MeSH
- Oximes MeSH
- Paraoxon MeSH
- Bridged-Ring Compounds MeSH
- Pyridinium Compounds MeSH
- Cholinesterase Reactivators MeSH