Nejvíce citovaný článek - PubMed ID 28922506
Organoruthenium Complexes with C^N Ligands are Highly Potent Cytotoxic Agents that Act by a New Mechanism of Action
Herein, we describe and investigate biological activity of three octahedral ruthenium(II) complexes of the type [Ru(C∧N)(phen)2]+, RuL1-RuL3, containing a π-expansive cyclometalating substituted benzo[g]quinoxaline ligand (C∧N ligand) (phen = 1,10-phenanthroline). Compounds RuL1-RuL3 in cervical, melanoma, and colon human cancer cells exhibit high phototoxicity after irradiation with light (particularly blue), with the phototoxicity index reaching 100 for the complex RuL2 in most sensitive HCT116 cells. RuL2 accumulates in the cellular membranes. If irradiated, it induces lipid peroxidation, likely connected with photoinduced ROS generation. Oxidative damage to the fatty acids leads to the attenuation of the membranes, the activation of caspase 3, and the triggering of the apoptotic pathway, thus implementing membrane-localized photodynamic therapy. RuL2 is the first photoactive ruthenium-based complex capable of killing the hardly treatable colon cancer stem cells, a highly resilient subpopulation within a heterogeneous tumor mass, responsible for tumor recurrence and the metastatic progression of cancer.
- MeSH
- apoptóza účinky léků MeSH
- buněčná membrána účinky léků metabolismus MeSH
- chinoxaliny * chemie farmakologie chemická syntéza MeSH
- fotochemoterapie * MeSH
- fotosenzibilizující látky * farmakologie chemie chemická syntéza terapeutické užití MeSH
- komplexní sloučeniny * farmakologie chemie chemická syntéza terapeutické užití MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádorové kmenové buňky * účinky léků patologie MeSH
- nádory tračníku * farmakoterapie patologie MeSH
- protinádorové látky * farmakologie chemie chemická syntéza terapeutické užití MeSH
- reaktivní formy kyslíku metabolismus MeSH
- ruthenium * chemie farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chinoxaliny * MeSH
- fotosenzibilizující látky * MeSH
- komplexní sloučeniny * MeSH
- protinádorové látky * MeSH
- reaktivní formy kyslíku MeSH
- ruthenium * MeSH
While ruthenium arene complexes have been widely investigated for their medicinal potential, studies on homologous compounds containing a tridentate tris(1-pyrazolyl)methane ligand are almost absent in the literature. Ruthenium(II) complex 1 was obtained by a modified reported procedure; then, the reactions with a series of organic molecules (L) in boiling alcohol afforded novel complexes 2-9 in 77-99% yields. Products 2-9 were fully structurally characterized. They are appreciably soluble in water, where they undergo partial chloride/water exchange. The antiproliferative activity was determined using a panel of human cancer cell lines and a noncancerous one, evidencing promising potency of 1, 7, and 8 and significant selectivity toward cancer cells. The tested compounds effectively accumulate in cancer cells, and mitochondria represent a significant target of biological action. Most notably, data provide convincing evidence that the mechanism of biological action is mediated by the inhibiting of mitochondrial calcium intake.
- MeSH
- homeostáza MeSH
- komplexní sloučeniny * farmakologie MeSH
- lidé MeSH
- mitochondrie MeSH
- nádorové buněčné linie MeSH
- nádory * farmakoterapie MeSH
- protinádorové látky * farmakologie terapeutické užití MeSH
- ruthenium * farmakologie MeSH
- vápník MeSH
- voda MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- komplexní sloučeniny * MeSH
- protinádorové látky * MeSH
- ruthenium * MeSH
- vápník MeSH
- voda MeSH
One concept of improving anticancer effects of conventional platinum-based antitumor drugs consists of conjugating these compounds with other biologically (antitumor) active agents, acting by a different mechanism. Here, we present synthesis, physicochemical characterization, biological effects, and mechanisms of action of four new analogs of conventional cisplatin, namely, cis-Pt(II) complexes containing either methyl or ethyl pyrazole N-donor ligands and chlorido or iodido ligands. It is noteworthy that while chlorido complexes display activity in a variety of cancer cell lines comparable to cisplatin, iodido complexes are considerably more potent due to their enhanced hydrophobicity and consequently enhanced cellular accumulation. Moreover, all of the studied Pt(II) alkylpyrazole complexes display a higher selectivity for tumor cells and effectively overcome the acquired resistance to cisplatin. Further results focused on the mechanism of action of the studied complexes and showed that in contrast to cisplatin and several platinum-based antitumor drugs, DNA damage by the investigated Pt(II)-alkylpyrazole complexes does not play a major role in their mechanism of action. Our findings demonstrate that inhibition of the tubulin kinesin Eg5, which is essential for forming a functional mitotic spindle, plays an important role in their mechanism of antiproliferative action.
- Publikační typ
- časopisecké články MeSH
Helicates and related metallofoldamers, synthesised by dynamic self-assembly, represent an area of chemical space inaccessible by traditional organic synthesis, and yet with potential for discovery of new classes of drug. Here we report that water-soluble, optically pure Fe(ii)- and even Zn(ii)-based triplex metallohelices are an excellent platform for post-assembly click reactions. By these means, the in vitro anticancer activity and most importantly the selectivity of a triplex metallohelix Fe(ii) system are dramatically improved. For one compound, a remarkable array of mechanistic and pharmacological behaviours is discovered: inhibition of Na+/K+ ATPase with potency comparable to the drug ouabain, antimetastatic properties (including inhibition of cell migration, re-adhesion and invasion), cancer stem cell targeting, and finally colonosphere inhibition competitive with the drug salinomycin.
- Publikační typ
- časopisecké články MeSH