Nejvíce citovaný článek - PubMed ID 28950209
Limitations in the description of conformational preferences of C-disaccharides: The (1 → 3)-C-mannobiose case
The conformational changes in a sugar moiety along the hydrolytic pathway are key to understand the mechanism of glycoside hydrolases (GHs) and to design new inhibitors. The two predominant itineraries for mannosidases go via O S2 →B2,5 →1 S5 and 3 S1 →3 H4 →1 C4 . For the CAZy family 92, the conformational itinerary was unknown. Published complexes of Bacteroides thetaiotaomicron GH92 catalyst with a S-glycoside and mannoimidazole indicate a 4 C1 →4 H5 /1 S5 →1 S5 mechanism. However, as observed with the GH125 family, S-glycosides may not act always as good mimics of GH's natural substrate. Here we present a cooperative study between computations and experiments where our results predict the E5 →B2,5 /1 S5 →1 S5 pathway for GH92 enzymes. Furthermore, we demonstrate the Michaelis complex mimicry of a new kind of C-disaccharides, whose biochemical applicability was still a chimera.
- Klíčová slova
- carbohydrates, conformations, enzymology, inhibitors, quantum mechanics,
- MeSH
- glykosidhydrolasy metabolismus MeSH
- glykosidy * chemie MeSH
- mannosidasy * chemie MeSH
- molekulární konformace MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- C-glycoside MeSH Prohlížeč
- glykosidhydrolasy MeSH
- glykosidy * MeSH
- mannosidasy * MeSH
Sugars are crucial components in biosystems and industrial applications. In aqueous environments, the natural state of short saccharides or charged glycosaminoglycans is floating and wiggling in solution. Therefore, tools to characterize their structure in a native aqueous environment are crucial but not always available. Here, we show that a combination of Raman/ROA and, on occasions, NMR experiments with Molecular Dynamics (MD) and Quantum Mechanics (QM) is a viable method to gain insights into structural features of sugars in solutions. Combining these methods provides information about accessible ring puckering conformers and their proportions. It also provides information about the conformation of the linkage between the sugar monomers, i.e., glycosidic bonds, allowing for identifying significantly accessible conformers and their relative abundance. For mixtures of sugar moieties, this method enables the deconvolution of the Raman/ROA spectra to find the actual amounts of its molecular constituents, serving as an effective analytical technique. For example, it allows calculating anomeric ratios for reducing sugars and analyzing more complex sugar mixtures to elucidate their real content. Altogether, we show that combining Raman/ROA spectroscopies with simulations is a versatile method applicable to saccharides. It allows for accessing many features with precision comparable to other methods routinely used for this task, making it a viable alternative. Furthermore, we prove that the proposed technique can scale up by studying the complicated raffinose trisaccharide, and therefore, we expect its wide adoption to characterize sugar structural features in solution.
- MeSH
- cukry analýza chemie MeSH
- optická otáčivost MeSH
- Ramanova spektroskopie metody MeSH
- simulace molekulární dynamiky MeSH
- voda chemie MeSH
- výpočetní biologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cukry MeSH
- voda MeSH