Nejvíce citovaný článek - PubMed ID 29122549
Chronic low-dose pro-oxidant treatment stimulates transcriptional activity of telomeric retroelements and increases telomere length in Drosophila
Studies on human telomeres have established that telomeres exert a significant influence on lifespan and health of organisms. However, recent research has indicated that the original idea that telomeres affect lifespan in a universal and central manner across all eukaryotic species is an oversimplification. Indeed, findings from a variety of animal species revealed that the role of telomere biology in aging is more subtle and intricate than previously recognized. Here, we show how telomere biology varies depending on the taxon. We also show how telomere biology corresponds to basic life history traits and affects the life table of a species and investments in growth, body size, reproduction, and lifespan; telomeres are hypothesized to shape evolutionary perspectives for species in an active but complex manner. Our evaluation is based on telomere biology data from many examples from throughout the animal kingdom that vary according to the degree of organismal complexity and life history strategies.
- Klíčová slova
- Aging, Life history traits, Lifespan, Telomerase, Telomeres,
- MeSH
- biologická evoluce MeSH
- dlouhověkost MeSH
- lidé MeSH
- stárnutí genetika MeSH
- telomerasa * genetika MeSH
- telomery MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- telomerasa * MeSH
- Klíčová slova
- alternative pathway, stress response, subtelomere, telomerase, telomere,
- Publikační typ
- úvodníky MeSH
Telomeres are protective structures at the ends of eukaryotic chromosomes, and disruption of their nucleoprotein composition usually results in genome instability and cell death. Telomeric DNA sequences have generally been found to be exceptionally conserved in evolution, and the most common pattern of telomeric sequences across eukaryotes is (TxAyGz)n maintained by telomerase. However, telomerase-added DNA repeats in some insect taxa frequently vary, show unusual features, and can even be absent. It has been speculated about factors that might allow frequent changes in telomere composition in Insecta. Coleoptera (beetles) is the largest of all insect orders and based on previously available data, it seemed that the telomeric sequence of beetles varies to a great extent. We performed an extensive mapping of the (TTAGG)n sequence, the ancestral telomeric sequence in Insects, across the main branches of Coleoptera. Our study indicates that the (TTAGG)n sequence has been repeatedly or completely lost in more than half of the tested beetle superfamilies. Although the exact telomeric motif in most of the (TTAGG)n-negative beetles is unknown, we found that the (TTAGG)n sequence has been replaced by two alternative telomeric motifs, the (TCAGG)n and (TTAGGG)n, in at least three superfamilies of Coleoptera. The diversity of the telomeric motifs was positively related to the species richness of taxa, regardless of the age of the taxa. The presence/absence of the (TTAGG)n sequence highly varied within the Curculionoidea, Chrysomeloidea, and Staphylinoidea, which are the three most diverse superfamilies within Metazoa. Our data supports the hypothesis that telomere dysfunctions can initiate rapid genomic changes that lead to reproductive isolation and speciation.
- MeSH
- brouci genetika MeSH
- DNA genetika MeSH
- eukaryotické buňky fyziologie MeSH
- fylogeneze MeSH
- genetické techniky MeSH
- tandemové repetitivní sekvence genetika MeSH
- telomerasa genetika MeSH
- telomery genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- telomerasa MeSH