Most cited article - PubMed ID 29127223
Systems genetic analysis of brown adipose tissue function
Thermogenesis in brown adipose tissue (BAT) uses intracellular triglycerides, circulating free fatty acids and glucose as the main substrates. The objective of the current study was to analyse the role of CD36 fatty acid translocase in regulation of glucose and fatty acid utilisation in BAT. BAT isolated from spontaneously hypertensive rat (SHR) with mutant Cd36 gene and SHR-Cd36 transgenic rats with wild type variant was incubated in media containing labeled glucose and palmitate to measure substrate incorporation and oxidation. SHR-Cd36 versus SHR rats showed significantly increased glucose incorporation into intracellular lipids associated with reduced glycogen synthase kinase 3β (GSK-3β) protein expression and phosphorylation and increased oxidation of exogenous palmitate. It can be concluded that CD36 enhances glucose transport for lipogenesis in BAT by suppressing GSK-3β and promotes direct palmitate oxidation.
- MeSH
- CD36 Antigens * genetics metabolism MeSH
- Glucose metabolism MeSH
- Adipose Tissue, Brown * metabolism MeSH
- Glycogen Synthase Kinase 3 beta metabolism MeSH
- Rats MeSH
- Fatty Acids metabolism MeSH
- Palmitates metabolism MeSH
- Rats, Inbred SHR MeSH
- Rats, Transgenic MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- CD36 Antigens * MeSH
- Glucose MeSH
- Glycogen Synthase Kinase 3 beta MeSH
- Fatty Acids MeSH
- Palmitates MeSH
Post transcriptional modifications of RNA are powerful mechanisms by which eukaryotes expand their genetic diversity. For instance, researchers estimate that most transcripts in humans undergo alternative splicing and alternative polyadenylation. These splicing events produce distinct RNA molecules, which in turn yield distinct protein isoforms and/or influence RNA stability, translation, nuclear export, and RNA/protein cellular localization. Due to their pervasiveness and impact, we hypothesized that alternative splicing and alternative polyadenylation in brain can contribute to a predisposition for voluntary alcohol consumption. Using the HXB/BXH recombinant inbred rat panel (a subset of the Hybrid Rat Diversity Panel), we generated over one terabyte of brain RNA sequencing data (total RNA) and identified novel splice variants (via StringTie) and alternative polyadenylation sites (via aptardi) to determine the transcriptional landscape in the brains of these animals. After establishing an analysis pipeline to ascertain high quality transcripts, we quantitated transcripts and integrated genotype data to identify candidate transcript coexpression networks and individual candidate transcripts associated with predisposition to voluntary alcohol consumption in the two-bottle choice paradigm. For genes that were previously associated with this trait (e.g., Lrap, Ift81, and P2rx4) (Saba et al., Febs. J., 282, 3556-3578, Saba et al., Genes. Brain. Behav., 20, e12698), we were able to distinguish between transcript variants to provide further information about the specific isoforms related to the trait. We also identified additional candidate transcripts associated with the trait of voluntary alcohol consumption (i.e., isoforms of Mapkapk5, Aldh1a7, and Map3k7). Consistent with our previous work, our results indicate that transcripts and networks related to inflammation and the immune system in brain can be linked to voluntary alcohol consumption. Overall, we have established a pipeline for including the quantitation of alternative splicing and alternative polyadenylation variants in the transcriptome in the analysis of the relationship between the transcriptome and complex traits.
Mitochondrial retrograde signaling is a pathway of communication from mitochondria to the nucleus. Recently, natural mitochondrial genome (mtDNA) polymorphisms (haplogroups) received increasing attention in the pathophysiology of human common diseases. However, retrograde effects of mtDNA variants on such traits are difficult to study in humans. The conplastic strains represent key animal models to elucidate regulatory roles of mtDNA haplogroups on defined nuclear genome background. To analyze the relationship between mtDNA variants and cardiometabolic traits, we derived a set of rat conplastic strains (SHR-mtBN, SHR-mtF344 and SHR-mtLEW), harboring all major mtDNA haplotypes present in common inbred strains on the nuclear background of the spontaneously hypertensive rat (SHR). The BN, F344 and LEW mtDNA differ from the SHR in multiple amino acid substitutions in protein coding genes and also in variants of tRNA and rRNA genes. Different mtDNA haplotypes were found to predispose to various sets of cardiometabolic phenotypes which provided evidence for significant retrograde effects of mtDNA in the SHR. In the future, these animals could be used to decipher individual biochemical components involved in the retrograde signaling.
- MeSH
- Phenotype MeSH
- Cardiovascular Diseases * metabolism MeSH
- Rats MeSH
- DNA, Mitochondrial * genetics MeSH
- Mitochondria metabolism MeSH
- Rats, Inbred F344 MeSH
- Rats, Inbred SHR MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- DNA, Mitochondrial * MeSH