Nejvíce citovaný článek - PubMed ID 29332594
In vitro and in silico Evaluation of Non-Quaternary Reactivators of AChE as Antidotes of Organophosphorus Poisoning - a New Hope or a Blind Alley?
Organophosphorus compounds, including pesticides and nerve agents, irreversibly inhibit acetylcholinesterase, leading to an accumulation of acetylcholine that can cause a cholinergic crisis. Standard treatment of organophosphate poisoning relies on oxime-based reactivators, such as pralidoxime, obidoxime, or asoxime. However, these compounds have several limitations, including poor penetration through the blood-brain barrier and limited efficacy across a broad spectrum of organophosphorus compounds. For this reason, non-oxime reactivators were introduced as potential alternatives. The most promising non-oxime reactivators contain Mannich phenol moiety, imidazole group or combination of both. Some of the non-oxime derivatives demonstrated better efficacy than standard oximes during in vitro evaluation. Nevertheless, these structures have significant drawbacks such as high intrinsic acetylcholinesterase inhibition or high toxicity profile which make them unsuitable for further in vivo tests. In this review, the current progress in the development of non-oxime reactivators is summarized and their bioactivity as well as their limitations are critically discussed.
- Klíčová slova
- Acetylcholinesterase, Butyrylcholinesterase, Nerve agent, Non-oxime, Reactivator,
- MeSH
- acetylcholinesterasa metabolismus MeSH
- antidota MeSH
- cholinesterasové inhibitory * toxicita MeSH
- lidé MeSH
- organofosforové sloučeniny toxicita MeSH
- otrava organofosfáty * farmakoterapie MeSH
- oximy MeSH
- reaktivátory cholinesterasy * farmakologie chemie terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- antidota MeSH
- cholinesterasové inhibitory * MeSH
- organofosforové sloučeniny MeSH
- oximy MeSH
- reaktivátory cholinesterasy * MeSH
Oxime reactivators of acetylcholinesterase are commonly used to treat highly toxic organophosphate poisoning. They are effective nucleophiles that can restore the catalytic activity of acetylcholinesterase; however, their main limitation is the difficulty in crossing the blood-brain barrier (BBB) because of their strongly hydrophilic nature. Various approaches to overcome this limitation and enhance the bioavailability of oxime reactivators in the CNS have been evaluated; these include structural modifications, conjugation with molecules that have transporters in the BBB, bypassing the BBB through intranasal delivery, and inhibition of BBB efflux transporters. A promising approach is the use of nanoparticles (NPs) as the delivery systems. Studies using mesoporous silica nanomaterials, poly (L-lysine)-graft-poly(ethylene oxide) NPs, metallic organic frameworks, poly(lactic-co-glycolic acid) NPs, human serum albumin NPs, liposomes, solid lipid NPs, and cucurbiturils, have shown promising results. Some NPs are considered as nanoreactors for organophosphate detoxification; these combine bioscavengers with encapsulated oximes. This study provides an overview and critical discussion of the strategies used to enhance the bioavailability of oxime reactivators in the central nervous system.
- Klíčová slova
- Acetylcholinesterase, Blood–brain barrier, Delivery system, Nanoparticle, Oxime, Reactivator,
- MeSH
- acetylcholinesterasa * MeSH
- biologická dostupnost MeSH
- biologický transport MeSH
- centrální nervový systém * MeSH
- hematoencefalická bariéra MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- acetylcholinesterasa * MeSH
The pyridinium-2-carbaldoximes with quinolinium carboxamide moiety were designed and synthesised as cholinesterase reactivators. The prepared compounds showed intermediate-to-high inhibition of both cholinesterases when compared to standard oximes. Their reactivation ability was evaluated in vitro on human recombinant acetylcholinesterase (hrAChE) and human recombinant butyrylcholinesterase (hrBChE) inhibited by nerve agent surrogates (NIMP, NEMP, and NEDPA) or paraoxon. In the reactivation screening, one compound was able to reactivate hrAChE inhibited by all used organophosphates and two novel compounds were able to reactivate NIMP/NEMP-hrBChE. The reactivation kinetics revealed compound 11 that proved to be excellent reactivator of paraoxon-hrAChE better to obidoxime and showed increased reactivation of NIMP/NEMP-hrBChE, although worse to obidoxime. The molecular interactions of studied reactivators were further identified by in silico calculations. Molecular modelling results revealed the importance of creation of the pre-reactivation complex that could lead to better reactivation of both cholinesterases together with reducing particular interactions for lower intrinsic inhibition by the oxime.
- Klíčová slova
- Organophosphate, acetylcholinesterase, butyrylcholinesterase, oxime, reactivator,
- MeSH
- acetylcholinesterasa metabolismus MeSH
- butyrylcholinesterasa metabolismus MeSH
- chinolinové sloučeniny chemická syntéza chemie farmakologie MeSH
- cholinesterasové inhibitory chemická syntéza chemie farmakologie MeSH
- lidé MeSH
- molekulární struktura MeSH
- pyridinové sloučeniny chemická syntéza chemie farmakologie MeSH
- rekombinantní proteiny metabolismus MeSH
- simulace molekulového dockingu MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- butyrylcholinesterasa MeSH
- chinolinové sloučeniny MeSH
- cholinesterasové inhibitory MeSH
- pyridinové sloučeniny MeSH
- rekombinantní proteiny MeSH