Nejvíce citovaný článek - PubMed ID 29369955
Reliability of Near-Infrared Spectroscopy for Measuring Intermittent Handgrip Contractions in Sport Climbers
PURPOSE: The critical force (CF) concept, differentiating steady and non-steady state conditions, extends the critical power paradigm for sport climbing. This study aimed to validate CF for finger flexors derived from the 4 min all-out test as a boundary for the highest sustainable work intensity in sport climbers. METHODS: Twelve participants underwent multiple laboratory visits. Initially, they performed the 4 min intermittent contraction all-out test for CF determination. Subsequent verification visits involved finger-flexor contractions at various intensities, including CF, CF -2 kg, CF -4 kg, and CF -6 kg, lasting for 720 s or until failure, while monitoring muscle-oxygen dynamics of forearm muscles. RESULTS: CF, determined from the mean force of last three contractions, was measured at 20.1 ± 5.7 kg, while the end-force at 16.8 ± 5.2 kg. In the verification trials, the mean time to failure at CF was 440 ± 140 s, with only one participant completing the 720 s task. When the load was continuously lowered (-2 kg, -4 kg, and -6 kg), a greater number of participants (38%, 69%, and 92%, respectively) successfully completed the 720 s task. Changes of muscle-oxygen dynamics showed a high variability and could not clearly distinguish between exhaustive and non-exhaustive trials. CONCLUSIONS: CF, based on the mean force of the last three contractions, failed to reliably predict the highest sustainable work rate. In contrast, determining CF as the end-force of the last three contractions exhibited a stronger link to sustainable work. Caution is advised in interpreting forearm muscle-oxygen dynamics, lacking sensitivity for nuanced metabolic responses during climbing-related tasks.
- Klíčová slova
- Critical power, Intermittent exercise, Isometric contraction, Muscle oxygen, NIRS, Threshold,
- MeSH
- dospělí MeSH
- horolezectví * fyziologie MeSH
- kosterní svaly * fyziologie MeSH
- lidé MeSH
- mladý dospělý MeSH
- prsty ruky * fyziologie MeSH
- spotřeba kyslíku fyziologie MeSH
- svalová kontrakce fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- validační studie MeSH
INTRODUCTION: It is acknowledged that training during recovery periods after injury involves reducing both volume and intensity, often resulting in losses of sport-specific fitness. Therefore, this study aimed to compare the effects of high-intensity training (HIT) and low-intensity training with blood flow restriction (LIT + BFR) of the finger flexors in order to preserve climbing-specific strength and endurance. METHODS: In a crossover design, thirteen intermediate climbers completed two 5-week periods of isometric finger flexors training on a hangboard. The trainings consisted of ten LIT + BFR (30% of max) or HIT sessions (60% of max without BFR) and were undertaken in a randomized order. The training session consisted of 6 unilateral sets of 1 min intermittent hanging at a 7:3 work relief ratio for both hands. Maximal voluntary contraction (MVC), force impulse from the 4 min all out test (W), critical force (CF) and force impulse above the critical force (W') of the finger flexors were assessed before, after the first, and after the second training period, using a climbing-specific dynamometer. Forearm muscle oxidative capacity was estimated from an occlusion test using near-infrared spectroscopy at the same time points. RESULTS: Both training methods led to maintaining strength and endurance indicators, however, no interaction (P > 0.05) was found between the training methods for any strength or endurance variable. A significant increase (P = 0.002) was found for W, primarily driven by the HIT group (pretest-25078 ± 7584 N.s, post-test-27327 ± 8051 N.s, P = 0.012, Cohen's d = 0.29). There were no significant (P > 0.05) pre- post-test changes for MVC (HIT: Cohen's d = 0.13; LIT + BFR: Cohen's d = -0.10), CF (HIT: Cohen's d = 0.36; LIT + BFR = 0.05), W` (HIT: Cohen's d = -0.03, LIT + BFR = 0.12), and forearm muscle oxidative capacity (HIT: Cohen's d = -0.23; LIT + BFR: Cohen's d = -0.07). CONCLUSIONS: Low volume of BFR and HIT led to similar results, maintaining climbing-specific strength and endurance in lower grade and intermediate climbers. It appears that using BFR training may be an alternative approach after finger injury as low mechanical impact occurs during training.
- Klíčová slova
- hypertrophy, hypoxia, injury, intermittent exercise, ischemia, isometric contraction, oxidative capacity, strength,
- Publikační typ
- časopisecké články MeSH
Purpose: Sport climbing is a technical, self-paced sport, and the workload is highly variable and mainly localized to the forearm flexors. It has not proved effective to control intensity using measures typical of other sports, such as gas exchange thresholds, heart rate, or blood lactate. Therefore, the purposes of the study were to (1) determine the possibility of applying the mathematical model of critical power to the estimation of a critical angle (CA) as a measure of maximal metabolic steady state in climbing and (2) to compare this intensity with the muscle oxygenation breakpoint (MOB) determined during an exhaustive climbing task. Materials and Methods: Twenty-seven sport climbers undertook three to five exhaustive ascents on a motorized treadwall at differing angles to estimate CA, and one exhaustive climbing test with a progressive increase in angle to determine MOB, assessed using near-infrared spectroscopy (NIRS). Results: Model fit for estimated CA was very high (R 2 = 0.99; SEE = 1.1°). The mean peak angle during incremental test was -17 ± 5°, and CA from exhaustive trials was found at -2.5 ± 3.8°. Nine climbers performing the ascent 2° under CA were able to sustain the task for 20 min with perceived exertion at 12.1 ± 1.9 (RPE). However, climbing 2° above CA led to task failure after 15.9 ± 3.0 min with RPE = 16.4 ± 1.9. When MOB was plotted against estimated CA, good agreement was stated (ICC = 0.80, SEM = 1.5°). Conclusion: Climbers, coaches, and researchers may use a predefined route with three to five different wall angles to estimate CA as an analog of critical power to determine a maximal metabolic steady state in climbing. Moreover, a climbing test with progressive increases in wall angle using MOB also appears to provide a valid estimate of CA.
- Klíčová slova
- critical power, finger flexors, muscle oxygenation, near infrared spectroscopy, oxygen kinetics, sport climbing,
- Publikační typ
- časopisecké články MeSH
The purpose of the present study was to assess the effect of different water immersion temperatures on handgrip performance and haemodynamic changes in the forearm flexors of males and females. Twenty-nine rock-climbers performed three repeated intermittent handgrip contractions to failure with 20 min recovery on three separate laboratory visits. For each visit, a randomly assigned recovery strategy was applied: cold water immersion (CWI) at 8 °C (CW8), 15 °C (CW15) or passive recovery (PAS). While handgrip performance significantly decreased in the subsequent trials for the PAS (p < 0.05), there was a significant increase in time to failure for the second and third trial for CW15 and in the second trial for CW8; males having greater performance improvement (44%) after CW15 than females (26%). The results indicate that CW15 was a more tolerable and effective recovery strategy than CW8 and the same CWI protocol may lead to different recovery in males and females.
- Klíčová slova
- Forearm, Haemoglobin, NIRS, Recovery, Tissue oxygenation,
- MeSH
- cvičení fyziologie MeSH
- dospělí MeSH
- kryoterapie metody MeSH
- kyslík fyziologie MeSH
- lidé MeSH
- nízká teplota škodlivé účinky MeSH
- ponoření MeSH
- sexuální faktory MeSH
- síla ruky fyziologie MeSH
- svalová kontrakce fyziologie MeSH
- voda MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie MeSH
- Názvy látek
- kyslík MeSH
- voda MeSH