Most cited article - PubMed ID 29443422
Linking dendroecology and association genetics in natural populations: Stress responses archived in tree rings associate with SNP genotypes in silver fir (Abies alba Mill.)
Quantifying the individual reproductive success and understanding its determinants is a central issue in evolutionary research for the major consequences that the transmission of genetic variation from parents to offspring has on the adaptive potential of populations. Here, we propose to distil the myriad of information embedded in tree-ring time series into a set of tree-ring-based phenotypic traits to be investigated as potential drivers of reproductive success in forest trees. By using a cross-disciplinary approach that combines parentage analysis and a thorough dendrophenotypic characterisation of putative parents, we assessed sex-specific relationships between such dendrophenotypic traits (i.e., age, growth rate and parameters describing sensitivity to climate and to extreme climatic events) and reproductive success in Norway spruce. We applied a full probability method for reconstructing parent-offspring relationships between 604 seedlings and 518 adult trees sampled within five populations from southern and central Europe. We found that individual female and male reproductive success was positively associated with tree growth rate and age. Female reproductive success was also positively influenced by the correlation between growth and the mean temperature of the previous vegetative season. Overall, our results showed that Norway spruce individuals with the highest fitness are those who are able to keep high-growth rates despite potential growth limitations caused by reproductive costs and climatic limiting conditions. Identifying such functional links between the individual ecophysiological behaviour and its evolutionary gain would increase our understanding on how natural selection shapes the genetic composition of forest tree populations over time.
- MeSH
- Forests MeSH
- Reproduction MeSH
- Picea * genetics growth & development MeSH
- Temperature * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Europe MeSH
The quantitative assessment of wood anatomical traits offers important insights into those factors that shape tree growth. While it is known that conduit diameter, cell wall thickness, and wood density vary substantially between and within species, the interconnection between wood anatomical traits, tree-ring width, tree height and age, as well as environment effects on wood anatomy remain unclear. Here, we measure and derived 65 wood anatomical traits in cross-sections of the five outermost tree rings (2008-2012) of 30 Norway spruce [Picea abies (L.) H. Karst.] trees growing along an altitudinal gradient (1,400-1,750 m a.s.l.) in the northern Apennines (Italy). We assess the relationship among each anatomical trait and between anatomical trait groups according to their function for (i) tree-ring growth, (ii) cell growth, (iii) hydraulic traits, and (iv) mechanical traits. The results show that tree height significantly affects wood hydraulic traits, as well as number and tangential diameter of tracheids, and ultimately the total ring width. Moreover, the amount of earlywood and latewood percentage influence wood hydraulic safety and efficiency, as well as mechanical traits. Mechanically relevant wood anatomical traits are mainly influenced by tree age, not necessarily correlated with tree height. An additional level of complexity is also indicated by some anatomical traits, such as latewood lumen diameter and the cell wall reinforcement index, showing large inter-annual variation as a proxy of phenotypic plasticity. This study unravels the complex interconnection of tree-ring tracheid structure and identifies anatomical traits showing a large inter-individual variation and a strong interannual coherency. Knowing and quantifying anatomical variation in cells of plant stem is crucial in ecological and biological studies for an appropriate interpretation of abiotic drivers of wood formation often related to tree height and/or tree age.
- Keywords
- allometric effect, ontogenesis, quantitative wood anatomy, temporal stability, xylem hydraulic constraints,
- Publication type
- Journal Article MeSH