Nejvíce citovaný článek - PubMed ID 29602037
Synthesis and anti-mitotic activity of 2,4- or 2,6-disubstituted- and 2,4,6-trisubstituted-2H-pyrazolo[4,3-c]pyridines
In this paper, an efficient synthetic route from pyrazole-chalcones to novel 6-aryl-5-hydroxy-2-phenylpyrano[2,3-c]pyrazol-4(2H)-ones as 3-hydroxyflavone analogues is described. The methylation of 5-hydroxy-2,6-phenylpyrano[2,3-c]pyrazol-4(2H)-one with methyl iodide in the presence of a base yielded a compound containing a 5-methoxy group, while the analogous reaction of 5-hydroxy-2-phenyl-6-(pyridin-4-yl)pyrano[2,3-c]pyrazol-4(2H)-one led to the zwitterionic 6-(N-methylpyridinium)pyrano[2,3-c]pyrazol derivative. The treatment of 5-hydroxy-2,6-phenylpyrano[2,3-c]pyrazol-4(2H)-one with triflic anhydride afforded a 5-trifloylsubstituted compound, which was further used in carbon-carbon bond forming Pd-catalyzed coupling reactions to yield 5-(hetero)aryl- and 5-carbo-functionalized pyrano[2,3-c]pyrazoles. The excited-state intramolecular proton transfer (ESIPT) reaction of 5-hydroxypyrano[2,3-c]pyrazoles from the 5-hydroxy moiety to the carbonyl group in polar protic, polar aprotic, and nonpolar solvents was observed, resulting in well-resolved two-band fluorescence. The structures of the novel heterocyclic compounds were confirmed by 1H-, 13C-, 15N-, and 19F-NMR spectroscopy, HRMS, and single-crystal X-ray diffraction data.
- Klíčová slova
- 3-hydroxyflavone, Algar–Flynn–Oyamada reaction, ESIPT, NMR investigation, pyrano[2,3-c]pyrazoles, pyrazoles,
- Publikační typ
- časopisecké články MeSH
A library of pyrazole-based lamellarin O analogues was synthesized from easily accessible 3(5)-aryl-1H-pyrazole-5(3)-carboxylates which were subsequently modified by bromination, N-alkylation and Pd-catalysed Suzuki cross-coupling reactions. Synthesized ethyl and methyl 3,4-diaryl-1-(2-aryl-2-oxoethyl)-1H-pyrazole-5-carboxylates were evaluated for their physicochemical property profiles and in vitro cytotoxicity against three human colorectal cancer cell lines HCT116, HT29, and SW480. The most active compounds inhibited cell proliferation in a low micromolar range. Selected ethyl 3,4-diaryl-1-(2-aryl-2-oxoethyl)-1H-pyrazole-5-carboxylates were further investigated for their mode of action. Results of combined viability staining via Calcein AM/Hoechst/PI and fluorescence-activated cell sorting data indicated that cell death was triggered in a non-necrotic manner mediated by mainly G2/M-phase arrest.
- Publikační typ
- časopisecké články MeSH
A general approach towards the synthesis of tetrahydro-4H-pyrazolo[1,5-a][1,4]diazepin-4-one, tetrahydro[1,4]diazepino[1,2-a]indol-1-one and tetrahydro-1H-benzo[4,5]imidazo[1,2-a][1,4]diazepin-1-one derivatives was introduced. A regioselective strategy was developed for synthesizing ethyl 1-(oxiran-2-ylmethyl)-1H-pyrazole-5-carboxylates from easily accessible 3(5)-aryl- or methyl-1H-pyrazole-5(3)-carboxylates. Obtained intermediates were further treated with amines resulting in oxirane ring-opening and direct cyclisation-yielding target pyrazolo[1,5-a][1,4]diazepin-4-ones. A straightforward two-step synthetic approach was applied to expand the current study and successfully functionalize ethyl 1H-indole- and ethyl 1H-benzo[d]imidazole-2-carboxylates. The structures of fused heterocyclic compounds were confirmed by 1H, 13C, and 15N-NMR spectroscopy and HRMS investigation.
- Klíčová slova
- benzimidazole, cyclisation, fused N-heterocycles, indole, oxirane ring-opening, pyrazole, regioselective N-alkylation,
- MeSH
- cyklizace MeSH
- pyrazoly * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- pyrazoly * MeSH
A library of 2,4,6,7-tetrasubstituted-2H-pyrazolo[4,3-c]pyridines was prepared from easily accessible 1-phenyl-3-(2-phenylethynyl)-1H-pyrazole-4-carbaldehyde via an iodine-mediated electrophilic cyclization of intermediate 4-(azidomethyl)-1-phenyl-3-(phenylethynyl)-1H-pyrazoles to 7-iodo-2,6-diphenyl-2H-pyrazolo[4,3-c]pyridines followed by Suzuki cross-couplings with various boronic acids and alkylation reactions. The compounds were evaluated for their antiproliferative activity against K562, MV4-11, and MCF-7 cancer cell lines. The most potent compounds displayed low micromolar GI50 values. 4-(2,6-Diphenyl-2H-pyrazolo[4,3-c]pyridin-7-yl)phenol proved to be the most active, induced poly(ADP-ribose) polymerase 1 (PARP-1) cleavage, activated the initiator enzyme of apoptotic cascade caspase 9, induced a fragmentation of microtubule-associated protein 1-light chain 3 (LC3), and reduced the expression levels of proliferating cell nuclear antigen (PCNA). The obtained results suggest a complex action of 4-(2,6-diphenyl-2H-pyrazolo[4,3-c]pyridin-7-yl)phenol that combines antiproliferative effects with the induction of cell death. Moreover, investigations of the fluorescence properties of the final compounds revealed 7-(4-methoxyphenyl)-2,6-diphenyl-2H-pyrazolo[4,3-c]pyridine as the most potent pH indicator that enables both fluorescence intensity-based and ratiometric pH sensing.
- Klíčová slova
- antiproliferation, cell death, cross-coupling, cycloiodination, pyrazole, pyridine,
- MeSH
- lidé MeSH
- molekulární struktura MeSH
- nádorové buňky kultivované MeSH
- proliferace buněk účinky léků MeSH
- protinádorové látky chemická syntéza chemie farmakologie MeSH
- screeningové testy protinádorových léčiv MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- protinádorové látky MeSH