Nejvíce citovaný článek - PubMed ID 29606215
The R2R3 transcription factor HlMYB8 and its role in flavonoid biosynthesis in hop (Humulus lupulus L.)
BACKGROUND: Hop (Humulus lupulus L.) bitter acids are valuable metabolites for the brewing industry. They are biosynthesized and accumulate in glandular trichomes of the female inflorescence (hop cone). The content of alpha bitter acids, such as humulones, in hop cones can differentiate aromatic from bitter hop cultivars. These contents are subject to genetic and environmental control but significantly correlate with the number and size of glandular trichomes (lupulin glands). RESULTS: We evaluated the expression levels of 37 genes involved in bitter acid biosynthesis and morphological and developmental differentiation of glandular trichomes to identify key regulatory factors involved in bitter acid content differences. For bitter acid biosynthesis genes, upregulation of humulone synthase genes, which are important for the biosynthesis of alpha bitter acids in lupulin glands, could explain the higher accumulation of alpha bitter acids in bitter hops. Several transcription factors, including HlETC1, HlMYB61 and HlMYB5 from the MYB family, as well as HlGLABRA2, HlCYCB2-4, HlZFP8 and HlYABBY1, were also more highly expressed in the bitter hop cultivars; therefore, these factors may be important for the higher density of lupulin glands also seen in the bitter hop cultivars. CONCLUSIONS: Gene expression analyses enabled us to investigate the differences between aromatic and bitter hops. This study confirmed that the bitter acid content in glandular trichomes (lupulin glands) is dependent on the last step of alpha bitter acid biosynthesis and glandular trichome density.
- Klíčová slova
- Bitter acids, Differential gene expression, Glandular trichome development, Hop, Humulus lupulus, Lupulin gland,
- MeSH
- Humulus metabolismus MeSH
- transkripční faktory metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- transkripční faktory MeSH
Viroids are small infectious pathogens, composed of a short single-stranded circular RNA. Hop (Humulus lupulus L.) plants are hosts to four viroids from the family Pospiviroidae. Hop latent viroid (HLVd) is spread worldwide in all hop-growing regions without any visible symptoms on infected hop plants. In this study, we evaluated the influence of HLVd infection on the content and the composition of secondary metabolites in maturated hop cones, together with gene expression analyses of involved biosynthesis and regulation genes for Saaz, Sládek, Premiant and Agnus cultivars. We confirmed that the contents of alpha bitter acids were significantly reduced in the range from 8.8% to 34% by viroid infection. New, we found that viroid infection significantly reduced the contents of xanthohumol in the range from 3.9% to 23.5%. In essential oils of Saaz cultivar, the contents of monoterpenes, terpene epoxides and terpene alcohols were increased, but the contents of sesquiterpenes and terpene ketones were decreased. Secondary metabolites changes were supported by gene expression analyses, except essential oils. Last-step biosynthesis enzyme genes, namely humulone synthase 1 (HS1) and 2 (HS2) for alpha bitter acids and O-methytransferase 1 (OMT1) for xanthohumol, were down-regulated by viroid infection. We found that the expression of ribosomal protein L5 (RPL5) RPL5 and the splicing of transcription factor IIIA-7ZF were affected by viroid infection and a disbalance in proteosynthesis can influence transcriptions of biosynthesis and regulatory genes involved in of secondary metabolites biosynthesis. We suppose that RPL5/TFIIIA-7ZF regulatory cascade can be involved in HLVd replication as for other viroids of the family Pospiviroidae.
- Klíčová slova
- HLVd, Humulus lupulus, bitter acids content, differential gene expression, essential oils, hop, hop latent viroid, xanthohumol,
- Publikační typ
- časopisecké články MeSH
The hop plant (Humulus lupulus L.) produces several valuable secondary metabolites, such as prenylflavonoid, bitter acids, and essential oils. These compounds are biosynthesized in glandular trichomes (lupulin glands) endowed with pharmacological properties and widely implicated in the beer brewing industry. The present study is an attempt to generate exhaustive information of transcriptome dynamics and gene regulatory mechanisms involved in biosynthesis and regulation of these compounds, developmental changes including trichome development at three development stages, namely leaf, bract, and mature lupulin glands. Using high-throughput RNA-Seq technology, a total of 61.13, 50.01, and 20.18 Mb clean reads in the leaf, bract, and lupulin gland libraries, respectively, were obtained and assembled into 43,550 unigenes. The putative functions were assigned to 30,996 transcripts (71.17%) based on basic local alignment search tool similarity searches against public sequence databases, including GO, KEGG, NR, and COG families, which indicated that genes are principally involved in fundamental cellular and molecular functions, and biosynthesis of secondary metabolites. The expression levels of all unigenes were analyzed in leaf, bract, and lupulin glands tissues of hop. The expression profile of transcript encoding enzymes of BCAA metabolism, MEP, and shikimate pathway was most up-regulated in lupulin glands compared with leaves and bracts. Similarly, the expression levels of the transcription factors and structural genes that directly encode enzymes involved in xanthohumol, bitter acids, and terpenoids biosynthesis pathway were found to be significantly enhanced in lupulin glands, suggesting that production of these metabolites increases after the leaf development. In addition, numerous genes involved in primary metabolism, lipid metabolism, photosynthesis, generation of precursor metabolites/energy, protein modification, transporter activity, and cell wall component biogenesis were differentially regulated in three developmental stages, suggesting their involvement in the dynamics of the lupulin gland development. The identification of differentially regulated trichome-related genes provided a new foundation for molecular research on trichome development and differentiation in hop. In conclusion, the reported results provide directions for future functional genomics studies for genetic engineering or molecular breeding for augmentation of secondary metabolite content in hop.
- Klíčová slova
- Humulus lupulus, RNA sequencing, bitter acids, lupulin glands, prenylflavonoids, terpenoids, trichome,
- MeSH
- flavonoidy biosyntéza chemie metabolismus MeSH
- genová ontologie MeSH
- Humulus chemie metabolismus MeSH
- listy rostlin genetika metabolismus MeSH
- propiofenony chemie metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné proteiny genetika metabolismus MeSH
- sekvenování transkriptomu MeSH
- terpeny chemie metabolismus MeSH
- transkripční faktory metabolismus MeSH
- transkriptom genetika MeSH
- trichomy genetika metabolismus ultrastruktura MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- flavonoidy MeSH
- propiofenony MeSH
- rostlinné proteiny MeSH
- terpeny MeSH
- transkripční faktory MeSH
- xanthohumol MeSH Prohlížeč
BACKGROUND: The hop plant (Humulus lupulus L.) is a valuable source of several secondary metabolites, such as flavonoids, bitter acids, and essential oils. These compounds are widely implicated in the beer brewing industry and are having potential biomedical applications. Several independent breeding programs around the world have been initiated to develop new cultivars with enriched lupulin and secondary metabolite contents but met with limited success due to several constraints. In the present work, a pioneering attempt has been made to overexpress master regulator binary transcription factor complex formed by HlWRKY1 and HlWDR1 using a plant expression vector to enhance the level of prenylflavonoid and bitter acid content in the hop. Subsequently, we performed transcriptional profiling using high-throughput RNA-Seq technology in leaves of resultant transformants and wild-type hop to gain in-depth information about the genome-wide functional changes induced by HlWRKY1 and HlWDR1 overexpression. RESULTS: The transgenic WW-lines exhibited an elevated expression of structural and regulatory genes involved in prenylflavonoid and bitter acid biosynthesis pathways. In addition, the comparative transcriptome analysis revealed a total of 522 transcripts involved in 30 pathways, including lipids and amino acids biosynthesis, primary carbon metabolism, phytohormone signaling and stress responses were differentially expressed in WW-transformants. It was apparent from the whole transcriptome sequencing that modulation of primary carbon metabolism and other pathways by HlWRKY1 and HlWDR1 overexpression resulted in enhanced substrate flux towards secondary metabolites pathway. The detailed analyses suggested that none of the pathways or genes, which have a detrimental effect on physiology, growth and development processes, were induced on a genome-wide scale in WW-transgenic lines. CONCLUSIONS: Taken together, our results suggest that HlWRKY1 and HlWDR1 simultaneous overexpression positively regulates the prenylflavonoid and bitter acid biosynthesis pathways in the hop and thus these transgenes are presented as prospective candidates for achieving enhanced secondary metabolite content in the hop.
- Klíčová slova
- Bitter acids, Flavonoids, Genetic transformation, Humulus lupulus, Secondary metabolite, Transcription factors, Transcriptome analysis,
- MeSH
- anotace sekvence MeSH
- exprese genu MeSH
- geneticky modifikované rostliny MeSH
- genomika * MeSH
- Humulus genetika MeSH
- rostlinné proteiny genetika MeSH
- stanovení celkové genové exprese * MeSH
- transkripční faktory genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- rostlinné proteiny MeSH
- transkripční faktory MeSH