Most cited article - PubMed ID 29608584
The endangered Florida pondweed (Potamogeton floridanus) is a hybrid: Why we need to understand biodiversity thoroughly
Aquatic plant species are often widespread, even across continents. They pose a challenge to species delimitation and taxonomy due to their reduced morphology and high phenotypic plasticity. These difficulties are even more pronounced in the case of interspecific hybridization. We investigate the aquatic plant genus Stuckenia for the first time on a worldwide scale. Expert species determination is aided by sequencing of nuclear ribosomal ITS and 5S-NTS regions and the plastid intergenic spacers rpl20-5'rps12 and trnT-trnL. Nuclear markers are used to infer hybridization, and the maternal origin of hybrids is addressed with plastid markers. Pure species are subjected to phylogenetic analyses. Two main Stuckenia lineages are found: one consists of S. amblyphylla, S. filiformis, S. pamirica, and S. vaginata, the other includes S. pectinata and S. striata. The widespread species S. pectinata, S. filiformis, and S. vaginata show intraspecific genetic variation, which is structured geographically. Many intraspecific hybrids, which are usually fertile, occur between those genotypes. Interspecific hybrids, which are consistently sterile, are detected among all widespread species; some are reported for the first time in several countries and regions. They originated multiple times from reciprocal crosses and reflect the geographical origins of parental genotypes. Intraspecific genetic variation can be higher than interspecific differences between closely related species. Comparison of phenotypic variation in the field and in cultivation with genotypic variation shows that numerous conspicuous forms have been overestimated taxonomically. These are resolved as phenotypes responding to unusual environments, have recurrently evolved adaptations, or represent extreme forms of continuous variation of the recognized species. However, some specific regional lineages, which have evolved from variable species, may be interpreted as early steps of the speciation process. Hybridization has been underestimated in some regions as a source of Stuckenia diversity, and the respective hybrid plants have been misidentified as intraspecific taxa or even as separate species. Many erroneous entries in sequence databases are detected and summarized. This work provides a sound basis for species delimitation and hybrid recognition in this difficult genus.
- Keywords
- Groenlandia, Potamogetonaceae, Stuckenia, geographic distribution, hybridization, intraspecific variation, multigene phylogeny, species delimitation,
- Publication type
- Journal Article MeSH
Molecular evolution of ribosomal DNA can be highly dynamic. Hundreds to thousands of copies in the genome are subject to concerted evolution, which homogenizes sequence variants to different degrees. If well homogenized, sequences are suitable for phylogeny reconstruction; if not, sequence polymorphism has to be handled appropriately. Here we investigate non-coding rDNA sequences (ITS/ETS, 5S-NTS) along with the chromosomal organization of their respective loci (45S and 5S rDNA) in diploids of the Hieraciinae. The subtribe consists of genera Hieracium, Pilosella, Andryala, and Hispidella and has a complex evolutionary history characterized by ancient intergeneric hybridization, allele sharing among species, and incomplete lineage sorting. Direct or cloned Sanger sequences and phased alleles derived from Illumina genome sequencing were subjected to phylogenetic analyses. Patterns of homogenization and tree topologies based on the three regions were compared. In contrast to most other plant groups, 5S-NTS sequences were generally better homogenized than ITS and ETS sequences. A novel case of ancient intergeneric hybridization between Hispidella and Hieracium was inferred, and some further incongruences between the trees were found, suggesting independent evolution of these regions. In some species, homogenization of ITS/ETS and 5S-NTS sequences proceeded in different directions although the 5S rDNA locus always occurred on the same chromosome with one 45S rDNA locus. The ancestral rDNA organization in the Hieraciinae comprised 4 loci of 45S rDNA in terminal positions and 2 loci of 5S rDNA in interstitial positions per diploid genome. In Hieracium, some deviations from this general pattern were found (3, 6, or 7 loci of 45S rDNA; three loci of 5S rDNA). Some of these deviations concerned intraspecific variation, and most of them occurred at the tips of the tree or independently in different lineages. This indicates that the organization of rDNA loci is more dynamic than the evolution of sequences contained in them and that locus number is therefore largely unsuitable to inform about species relationships in Hieracium. No consistent differences in the degree of sequence homogenization and the number of 45S rDNA loci were found, suggesting interlocus concerted evolution.
- Keywords
- 45S rDNA, 5S rDNA, Andryala, Hieracium, Pilosella, concerted evolution, in situ hybridization, molecular phylogeny,
- Publication type
- Journal Article MeSH
Data mining for a phylogenetic study including the prominent ericoid mycorrhizal fungus Rhizoscyphus ericae revealed nearly identical ITS sequences of the bryophilous Hyaloscypha hepaticicola suggesting they are conspecific. Additional genetic markers and a broader taxonomic sampling furthermore suggested that the sexual Hyaloscypha and the asexual Meliniomyces may be congeneric. In order to further elucidate these issues, type strains of all species traditionally treated as members of the Rhizoscyphus ericae aggregate (REA) and related taxa were subjected to phylogenetic analyses based on ITS, nrLSU, mtSSU, and rpb2 markers to produce comparable datasets while an in vitro re-synthesis experiment was conducted to examine the root-symbiotic potential of H. hepaticicola in the Ericaceae. Phylogenetic evidence demonstrates that sterile root-associated Meliniomyces, sexual Hyaloscypha and Rhizoscyphus, based on R. ericae, are indeed congeneric. To this monophylum also belongs the phialidic dematiaceous hyphomycetes Cadophora finlandica and Chloridium paucisporum. We provide a taxonomic revision of the REA; Meliniomyces and Rhizoscyphus are reduced to synonymy under Hyaloscypha. Pseudaegerita, typified by P. corticalis, an asexual morph of H. spiralis which is a core member of Hyaloscypha, is also transferred to the synonymy of the latter genus. Hyaloscypha melinii is introduced as a new root-symbiotic species from Central Europe. Cadophora finlandica and C. paucisporum are confirmed conspecific, and four new combinations in Hyaloscypha are proposed. Based on phylogenetic analyses, some sexually reproducing species can be attributed to their asexual counterparts for the first time whereas the majority is so far known only in the sexual or asexual state. Hyaloscypha bicolor sporulating in vitro is reported for the first time. Surprisingly, the mycological and mycorrhizal sides of the same coin have never been formally associated, mainly because the sexual and asexual morphs of these fungi have been studied in isolation by different research communities. Evaluating all these aspects allowed us to stabilize the taxonomy of a widespread and ecologically well-studied group of root-associated fungi and to link their various life-styles including saprobes, bryophilous fungi, root endophytes as well as fungi forming ericoid mycorrhizae and ectomycorrhizae.
- Keywords
- Ectomycorrhiza, Ericoid mycorrhiza, Hyaloscypha bicolor (Hambl. & Sigler) Vohník, Fehrer & Réblová, Hyaloscypha finlandica (C.J.K. Wang & H.E. Wilcox) Vohník, Fehrer & Réblová, Hyaloscypha hepaticicola, Hyaloscypha melinii Vohník, Fehrer & Réblová, Hyaloscypha variabilis (Hambl. & Sigler) Vohník, Fehrer & Réblová, Hyaloscypha vraolstadiae (Hambl. & Sigler) Vohník, Fehrer & Réblová, Hymenoscyphus ericae, Meliniomyces, Molecular systematics, Mycorrhizal synthesis, Pezoloma ericae, Pseudaegerita, Sexual-asexual connection,
- Publication type
- Journal Article MeSH