Nejvíce citovaný článek - PubMed ID 29847551
Research on decomposer communities has traditionally focused on plant litter or deadwood. Even though carrion forms highly nutrient-rich necromass that enhance ecosystem heterogeneity, the factors influencing saprophytic communities remain largely unknown. For deadwood, experiments have shown that different drivers determine beetles (i.e., decay stage, microclimate, and space), fungi (i.e., decay stage and tree species) and bacteria (decay stage only) assemblages. To test the hypothesis that similar factors also structure carrion communities, we sampled 29 carcasses exposed for 30 days that included Cervus elaphus (N = 6), Capreolus capreolus (N = 18), and Vulpes vulpes (N = 5) in a mountain forest throughout decomposition. Beetles were collected with pitfall traps, while microbial communities were characterized using amplicon sequencing. Assemblages were determined with a focus from rare to dominant species using Hill numbers. With increasing focus on dominant species, the relative importance of carcass identity on beetles and space on bacteria increased, while only succession and microclimate remained relevant for fungi. For beetle and bacteria with focus on dominant species, host identity was more important than microclimate, which is in marked contrast to deadwood. We conclude that factors influencing carrion saprophytic assemblages show some consistency, but also differences from those of deadwood assemblages, suggesting that short-lived carrion and long-lasting deadwood both provide a resource pulse with different adaptions in insects and microbes. As with deadwood, a high diversity of carcass species under multiple decay stages and different microclimates support a diverse decomposer community.
- Klíčová slova
- Carrion, Decay stage, Microbes, Multi-taxa communities, Necrophilous beetles,
- MeSH
- biodiverzita MeSH
- brouci * MeSH
- ekosystém * MeSH
- hmyz MeSH
- houby MeSH
- lesy MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
In contrast to other necromass, such as leaves, deadwood, or dung, the drivers of insect biodiversity on carcasses are still incompletely understood. For vertebrate scavengers, a richer community was shown for randomly placed carcasses, due to lower competition. Here we tested if scavenging beetles similarly show a higher diversity at randomly placed carcasses compared to easily manageable fixed places. We sampled 12,879 individuals and 92 species of scavenging beetles attracted to 17 randomly and 12 at fixed places exposed and decomposing carcasses of red deer, roe deer, and red foxes compared to control sites in a low range mountain forest. We used rarefaction-extrapolation curves along the Hill-series to weight diversity from rare to dominant species and indicator species analysis to identify differences between placement types, the decay stage, and carrion species. Beetle diversity decreased from fixed to random locations, becoming increasingly pronounced with weighting of dominant species. In addition, we found only two indicator species for exposure location type, both representative of fixed placement locations and both red listed species, namely Omosita depressa and Necrobia violacea. Furthermore, we identified three indicator species of Staphylinidae (Philonthus marginatus and Oxytelus laqueatus) and Scarabaeidae (Melinopterus prodromus) for larger carrion and one geotrupid species Anoplotrupes stercorosus for advanced decomposition stages. Our study shows that necrophilous insect diversity patterns on carcasses over decomposition follow different mechanisms than those of vertebrate scavengers with permanently established carrion islands as important habitats for a diverse and threatened insect fauna.
- Klíčová slova
- Coleoptera, carrion, decomposition, forest, indicator species, necrobiome, scavenger, succession, trapping,
- Publikační typ
- časopisecké články MeSH