Nejvíce citovaný článek - PubMed ID 29931716
Fullerene as a doxorubicin nanotransporter for targeted breast cancer therapy: Capillary electrophoresis analysis
Nanomedicines, including polymer nanocarriers with controlled drug release, are considered next-generation therapeutics with advanced therapeutic properties and reduced side effects. To develop safe and efficient nanomedicines, it is crucial to precisely determine the drug release kinetics. Herein, we present application of analytical methods, i.e., surface plasmon resonance biosensor technology (SPR), capillary electrophoresis, and 1H diffusion-ordered nuclear magnetic resonance spectroscopy, which were innovatively applied for drug release determination. The methods were optimised to quantify the pH-triggered release of three structurally different drugs from a polymer carrier. The suitability of these methods for drug release characterisation was evaluated and compared using several parameters including applicability for diverse samples, the biological relevance of the experimental setup, method complexity, and the analysis outcome. The SPR method was the most universal method for the evaluation of diverse drug molecule release allowing continuous observation in the flow-through setting and requiring a small amount of sample.
- Publikační typ
- časopisecké články MeSH
This study aimed to synthesise C60-DOX complexes followed by the analysis of their effect on the concentration of metallothionein (MT) as a non-enzymatic antioxidant and on the concentration and activity of superoxide dismutase (SOD) as an antioxidant enzyme in healthy human mammary MCF-10A cells. Dynamic light scattering and electrophoretic light scattering were used to establish the size and zeta potential of the complexes. The MT and SOD concentrations were determined using the ELISA method; SOD activity was determined by tetrazolium salt reduction inhibition. Lower MT concentration following exposure of cells to both DOX and C60 fullerene compared to the control sample was found. However, the concentration of this protein increased as a consequence of the C60-DOX complexes action on MCF-10A cells compared to the control. C60 used alone did not affect the concentration and activity of SOD in MCF-10A cells. Application of free DOX did not activate cellular antioxidant defence in the form of an increase in SOD concentration or its activity. In contrast treatment of cells with the C60-DOX complex resulted in a decrease in SOD1 concentration and a significant increase in SOD activity compared to cells treated with free DOX, C60 and control. Thus, it was found that C60-DOX complexes showed potential for protective effects against DOX-induced toxicity to MCF-10A cells.
- Klíčová slova
- doxorubicin, drug delivery system, epithelial cells, fullerenes, metallothionein, superoxide dismutase,
- Publikační typ
- časopisecké články MeSH
Doxorubicin (DOX) is one of the most frequently used anticancer drugs in breast cancer treatment. However, clinical applications of DOX are restricted, largely due to the fact that its action disturbs the pro/antioxidant balance in both cancerous and non-cancerous cells. The aim of this study was to investigate the influence of fullerene (C60) in cell treatment by DOX on the proliferation of human breast cancer cells (MCF-7), concentration of metallothionein (MT) and superoxide dismutase (SOD), and SOD activity in these cells. The use of C60 in complexes with DOX causes a change in the level of cell proliferation of about 5% more than when caused by DOX alone (from 60⁻65% to 70%). The use of C60 as a DOX nanotransporter reduced the MT level increase induced by DOX. C60 alone caused an increase of SOD1 concentration. On the other hand, it led to a decrease of SOD activity. C60 in complex with DOX caused a decrease of the DOX-induced SOD activity level. Exposure of MCF-7 cells to DOX-C60 complexes results in a decrease in viable cells and may become a new therapeutic approach to breast cancer. The effects of C60 in complexes with DOX on MCF-7 cells included a decreased enzymatic (SOD activity) and nonenzymatic (MT) antioxidant status, thus indicating their prooxidant role in MCF-7 cells.
- Klíčová slova
- breast tumors, doxorubicin, drug delivery systems, fullerene, nanoparticles, metallothionein, superoxide dismutase,
- MeSH
- doxorubicin farmakologie MeSH
- fullereny chemie MeSH
- lidé MeSH
- metalothionein metabolismus MeSH
- MFC-7 buňky MeSH
- nanočástice chemie MeSH
- proliferace buněk účinky léků MeSH
- protinádorové látky farmakologie MeSH
- superoxiddismutasa 1 metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- doxorubicin MeSH
- fullereny MeSH
- metalothionein MeSH
- protinádorové látky MeSH
- SOD1 protein, human MeSH Prohlížeč
- superoxiddismutasa 1 MeSH