Most cited article - PubMed ID 29967922
The Mite Tyrophagus putrescentiae Hosts Population-Specific Microbiomes That Respond Weakly to Starvation
A novel Bartonella-like symbiont (BLS) of Tyrophagus putrescentiae was characterized. BLS formed a separate cluster from the Bartonella clade together with an ant symbiont. BLS was present in mite bodies (103 16S DNA copies/mite) and feces but was absent in eggs. This indicated the presence of the BLS in mite guts. The BLS showed a reduction in genome size (1.6 Mb) and indicates gene loss compared to Bartonella apis. The BLS can be interacted with its host by using host metabolic pathways (e.g., the histidine and arginine metabolic pathways) as well as by providing its own metabolic pathways (pantothenate and lipoic acid) to the host, suggesting the existence of a mutualistic association. Our experimental data further confirmed these potential mutualistic nutritional associations, as cultures of T. putrescentiae with low BLS abundance showed the strongest response after the addition of vitamins. Despite developing an arguably tight dependency on its host, the BLS has probably retained flagellar mobility, as evidenced by the 32 proteins enriched in KEGG pathways associated with flagellar assembly or chemotaxis (e.g., fliC, flgE, and flgK, as highly expressed genes). Some of these proteins probably also facilitate adhesion to host gut cells. The microcin C transporter was identified in the BLS, suggesting that microcin C may be used in competition with other gut bacteria. The 16S DNA sequence comparison indicated a mite clade of BLSs with a broad host range, including house dust and stored-product mites. Our phylogenomic analyses identified a unique lineage of arachnid specific BLSs in mites and scorpions.IMPORTANCEA Bartonella-like symbiont was found in an astigmatid mite of allergenic importance. We assembled the genome of the bacterium from metagenomes of different stored-product mite (T. putrescentiae) cultures. The bacterium provides pantothenate and lipoic acid to the mite host. The vitamin supply explains the changes in the relative abundance of BLSs in T. putrescentiae as the microbiome response to nutritional or pesticide stress, as observed previously. The phylogenomic analyses of available 16S DNA sequences originating from mite, scorpion, and insect samples identified a unique lineage of arachnid specific forming large Bartonella clade. BLSs associated with mites and a scorpion. The Bartonella clade included the previously described Ca. Tokpelaia symbionts of ants.
- Keywords
- Bartonella, ants, house dust, mite, nutrition, stored-product, symbionts, vitamin,
- MeSH
- Acaridae * microbiology MeSH
- Allergens MeSH
- Bacteria MeSH
- Bartonella * genetics MeSH
- Thioctic Acid * MeSH
- Mites * genetics MeSH
- Symbiosis MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Allergens MeSH
- Thioctic Acid * MeSH
Arthropods can host well-developed microbial communities, and such microbes can degrade pesticides and confer tolerance to most types of pests. Two cultures of the stored-product mite Tyrophagus putrescentiae, one with a symbiotic microbiome containing Wolbachia and the other without Wolbachia, were compared on pesticide residue (organophosphate: pirimiphos-methyl and pyrethroid: deltamethrin, deltamethrin + piperonyl butoxide)-containing diets. The microbiomes from mite bodies, mite feces and debris from the spent mite diet were analyzed using barcode sequencing. Pesticide tolerance was different among mite cultures and organophosphate and pyrethroid pesticides. The pesticide residues influenced the microbiome composition in both cultures but without any remarkable trend for mite cultures with and without Wolbachia. The most influenced bacterial taxa were Bartonella-like and Bacillus for both cultures and Wolbachia for the culture containing this symbiont. However, there was no direct evidence of any effect of Wolbachia on pesticide tolerance. The high pesticide concentration residues in diets reduced Wolbachia, Bartonella-like and Bacillus in mites of the symbiotic culture. This effect was low for Bartonella-like and Bacillus in the asymbiotic microbiome culture. The results showed that the microbiomes of mites are affected by pesticide residues in the diets, but the effect is not systemic. No actual detoxification effect by the microbiome was observed for the tested pesticides.
- Keywords
- Antibiotics, Microbiome, Mold mite, Pesticide, Wolbachia,
- MeSH
- Acaridae * microbiology MeSH
- Bacillus * genetics MeSH
- Bartonella * MeSH
- Microbiota * MeSH
- Pesticides * pharmacology MeSH
- Pyrethrins * pharmacology MeSH
- Pesticide Residues * pharmacology MeSH
- Mites * microbiology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- decamethrin MeSH Browser
- Pesticides * MeSH
- Pyrethrins * MeSH
- Pesticide Residues * MeSH
BACKGROUND: The contribution of the microbiome to pesticide breakdown in agricultural pests remains unclear. We analyzed the effect of pirimiphos-methyl (PM) on four geographically different cultures of the stored product pest mite Acarus siro (6 L, 6Tu, 6Tk and 6Z) under laboratory experiments. The effect of PM on mite mortality in the impregnated filter paper test was compared. RESULTS: The mite sensitivity to PM decreased in the order of 6 L, 6Tu, 6Tk, and 6Z. Then, the mites were cultured on PM residues (0.0125 and 1.25 µg·g-1), and population growth was compared to the control after 21 days of exposure. The comparison showed two situations: (i) increasing population growth for the most sensitive cultures (6 L and 6Tu), and (ii) no effect on mite population growth for tolerant cultures (6Z and 6Tk). The microbiome of mites was analyzed by quantification of 16S DNA copies based on quantitative polymerase chain reaction (qPCR) and by barcode sequencing of the V4 fragment of 16S DNA on samples of 30 individuals from the control and PM residues. The microbiome comprised primarily Solitalea-like organisms in all cultures, except for 6Z, followed by Bacillus, Staphylococcus, and Lactobacillus. The microbiomes of mite cultures did not change with increasing population density. The microbiome of cultures without any differences in population density showed differences in the microbiome composition. A Sodalis-like symbiont replaced Solitalea in the 1.25 µg·g-1 PM in the 6Tk culture. Sodalis and Bacillus prevailed in the microbiomes of PM-treated mites of 6Z culture, while Solitalea was almost absent. CONCLUSION: The results showed that the microbiome of A. siro differs in composition and in response to PM residues in the diet. The results indicate that Sodalis-like symbionts can help recover mites from pesticide-induced stress.
- Keywords
- Pesticide; Storage; Interaction; Tolerance; Symbionts,
- MeSH
- Acaridae * MeSH
- Bacteroidetes MeSH
- Humans MeSH
- Microbiota * MeSH
- Pesticide Residues * MeSH
- Mites * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- pirimiphos methyl MeSH Browser
- Pesticide Residues * MeSH
Feces have been suggested as a major source of microorganisms for recolonization of the gut of stored product mites via coprophagy. The mites can host microorganisms that decrease their fitness, but their transmission is not known. To address the role of fecal microbiota on mite fitness, we performed an experimental study in which the surfaces of mite (Tyrophagus putrescentiae) eggs were sterilized. Mites eggs (15 per experimental box) were then hatched and grown on feedstock with and without feces. These experiments were conducted with four distinct T. putrescentiae populations (5L, 5K, 5N, and 5P), and mite population density after 21 day of cultivation was used to assess mite fitness and the impact of fecal microbiota on fitness. Population density was not affected by the presence of feces in two of the cultures (5L and 5K), while significant effects of feces were observed in the other cultures (5N and 5P). Mite culture microbial communities were analyzed using cultivation-independent next-generation amplicon sequencing of microbial 16S and 18S ribosomal RNA (rRNA) genes in the fitness influenced populations (5N and 5P). Several microbial taxa were associated with fecal treatments and reduced mite fitness, including Staphylococcus and Bartonella-like bacteria, and the fungal genera Yamadazyma, Candida, and Aspergillus. Although coprophagy is the transmission route mites used to obtain beneficial gut bacteria such as Bartonella-like organisms, the results of this study demonstrate that fecal-associated microorganisms can have negative effects on some populations of T. putrescentiae fitness, and this may counteract the positive effects of gut symbiont acquisition.
- Keywords
- feces, feeding, microorganisms, mite, transmission, yeasts,
- Publication type
- Journal Article MeSH
Arthropod-associated microorganisms are important because they affect host fitness, protect hosts from pathogens, and influence the host's ability to vector pathogens. Stored product mites (Astigmata) often establish large populations in various types of food items, damaging the food by direct feeding and introducing contaminants, including their own bodies, allergen-containing feces, and associated microorganisms. Here we access the microbial structure and abundance in rearing diets, eggs, feces fraction, and mite bodies of 16 mite populations belonging to three species (Carpoglyphus lactis, Acarus siro, and Tyrophagus putrescentiae) using quantitative PCR and 16S ribosomal RNA (rRNA) gene amplicon sequencing. The mite microbiomes had a complex structure dominated by the following bacterial taxa (OTUs): (a) intracellular symbionts of the genera Cardinium and Wolbachia in the mite bodies and eggs; (b) putative gut symbionts of the genera Solitalea, Bartonella, and Sodalis abundant in mite bodies and also present in mite feces; (c) feces-associated or environmental bacteria of the genera Bacillus, Staphylococcus, and Kocuria in the diet, mite bodies, and feces. Interestingly and counterintuitively, the differences between microbial communities in various conspecific mite populations were higher than those between different mite species. To explain some of these differences, we hypothesize that the intracellular bacterial symbionts can affect microbiome composition in mite bodies, causing differences between microbial profiles. Microbial profiles differed between various sample types, such as mite eggs, bodies, and the environment (spent growth medium-SPGM). Low bacterial abundances in eggs may result in stochastic effects in parent-offspring microbial transmission, except for the intracellular symbionts. Bacteria in the rearing diet had little effect on the microbial community structure in SPGM and mite bodies. Mite fitness was positively correlated with bacterial abundance in SPGM and negatively correlated with bacterial abundances in mite bodies. Our study demonstrates critical host-microbe interactions, affecting all stages of mite growth and leading to alteration of the environmental microbiome. Correlational evidence based on absolute quantitation of bacterial 16S rRNA gene copies suggests that mite-associated microorganisms are critical for modulating important pest properties of mites by altering population growth.
- Keywords
- Allergen, Bartonella, Cardinium, Eggs, Feces, Feeding, Mite, Symbionts, Wolbachia,
- MeSH
- Acaridae classification growth & development microbiology MeSH
- Bacteria classification genetics isolation & purification MeSH
- Diet MeSH
- Feces microbiology MeSH
- Phylogeny MeSH
- Host Microbial Interactions MeSH
- Microbiota * MeSH
- Ovum microbiology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
The two common species of house dust mites (HDMs), Dermatophagoides farinae and D. pteronyssinus, are major sources of allergens in human dwellings worldwide. Many allergens from HDMs have been described, but their extracts vary in immunogens. Mite strains may differ in their microbiomes, which affect mite allergen expression and contents of bacterial endotoxins. Some bacteria, such as the intracellular symbiont Cardinium, can affect both the sex ratio and biochemical pathways of mites, resulting in abundance variations of mite allergens/immunogens. Here, we investigated the bacterial microbiomes of D. farinae and D. pteronyssinus males and females using barcode 16S rDNA sequencing, qPCR, and genomic data analysis. We found a single species of Cardinium associated with D. farinae strains from the USA, China and Europe. Cardinium had high abundance relative to other bacterial taxa and represented 99% of all bacterial DNA reads from female mites from the USA. Cardinium was also abundant with respect to the number of host cells-we estimated 10.4-11.8 cells of Cardinium per single female mite cell. In a European D. farinae strain, Cardinium was more prevalent in females than in males (representing 92 and 67% of all bacterial taxa in females and males, respectively). In contrast, D. pteronyssinus lacked any Cardinium species, and the microbiomes of male and female mites were similar. We produced a Cardinium genome assembly (1.48 Mb; GenBank: PRJNA555788, GCA_007559345.1) associated with D. farinae. The ascertained ubiquity and abundance of Cardinium strongly suggest that this intracellular bacterium plays an important biological role in D. farinae.
- Keywords
- Acaridida, Allergen production, Astigmata, Cardinium, Dermatophagoides pteronyssinus, Microbiome,
- MeSH
- Bacteroidetes isolation & purification MeSH
- Dermatophagoides farinae microbiology MeSH
- Dermatophagoides pteronyssinus microbiology MeSH
- Genome, Bacterial * MeSH
- Microbiota MeSH
- Whole Genome Sequencing MeSH
- Symbiosis MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- China MeSH
- Europe MeSH
- United States MeSH