Nejvíce citovaný článek - PubMed ID 29994970
The histological microstructure and in vitro mechanical properties of the human female postmenopausal perineal body
The use of biologically derived vessels as small-diameter vascular grafts in vascular diseases is currently intensely studied. Vessel decellularization provides a biocompatible scaffold with very low immunogenicity that avoids immunosuppression after transplantation. Good scaffold preservation is important as it facilitates successful cell repopulation. In addition, mechanical characteristics have to be carefully evaluated when the graft is intended to be used as an artery due to the high pressures the vessel is subjected to. Here, we present a new and fast decellularization protocol for porcine carotid arteries, followed by investigation of the quality of obtained vessel scaffolds in terms of maintenance of important extracellular matrix components, mechanical resistance, and compatibility with human endothelial cells. Our results evidence that our decellularization protocol minimally alters both the presence of scaffold proteins and their mechanical behavior and human endothelial cells could adhere to the scaffold in vitro. We conclude that if a suitable protocol is used, a high-quality decellularized arterial scaffold of non-human origin can be promptly obtained, having a great potential to be recellularized and used as an arterial graft in transplantation medicine.
- Klíčová slova
- ECM proteins, endothelial cell adhesion, mechanical properties, optimized decellularization, porcine carotid artery, scaffold quality,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION AND HYPOTHESIS: Several studies have assessed birth-related deformations of the levator ani muscle (LAM) and perineum on models that depicted these elements in isolation. The main aim of this study was to develop a complex female pelvic floor computational model using the finite element method to evaluate points and timing of maximum stress at the LAM and perineum in relation to the birth process. METHODS: A three-dimensional computational model of the female pelvic floor was created and used to simulate vaginal birth based on data from previously described real-life MRI scans. We developed three models: model A (LAM without perineum); model B (perineum without LAM); model C (a combined model with both structures). RESULTS: The maximum stress in the LAM was achieved when the vertex was 9 cm below the ischial spines and measured 37.3 MPa in model A and 88.7 MPa in model C. The maximum stress in the perineum occurred at the time of distension by the suboocipito-frontal diameter and reached 86.7 MPa and 119.6 MPa in models B and C, respectively, while the stress in the posterior fourchette caused by the suboccipito-bregmatic diameter measured 36.9 MPa for model B and 39.8 MPa for model C. CONCLUSIONS: Including perineal structures in a computational birth model simulation affects the level of stress at the LAM. The maximum stress at the LAM and perineum seems to occur when the head is lower than previously anticipated.
- Klíčová slova
- Birth, Delivery, Levator, Modeling, Muscle, Partum, Perineal, Stress, Tension,
- MeSH
- analýza metodou konečných prvků MeSH
- lidé MeSH
- pánevní dno * diagnostické zobrazování MeSH
- perineum MeSH
- těhotenství MeSH
- vedení porodu * MeSH
- zubní porcelán MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- finesse MeSH Prohlížeč
- zubní porcelán MeSH
INTRODUCTION AND HYPOTHESIS: Quantitative characterization of the birth canal and critical structures before delivery may provide risk assessment for maternal birth injury. The objective of this study was to explore imaging capability of an antepartum tactile imaging (ATI) probe. METHODS: Twenty randomly selected women older than 21 years with completed 35th week of pregnancy and a premise of vaginal delivery were enrolled in the feasibility study. The biomechanical data were acquired using the ATI probe with a double-curved surface, shaped according to the fetal skull and equipped with 168 tactile sensors and an electromagnetic motion tracking sensor. Software package COMSOL Multiphysics was used for finite element modeling. Subjects were asked for assessment of pain and comfort levels experienced during the ATI examination. RESULTS: All 20 nulliparous women were successfully examined with the ATI. Mean age was 27.8 ± 4.1 years, BMI 30.7 ± 5.8, and week of pregnancy 38.8 ± 1.4. Biomechanical mapping with the ATI allowed real-time observation of the probe location, applied load to the vaginal walls, and a 3D tactile image composition. The nonlinear finite element model describing the stress-strain relationship of the pelvic tissue was developed and used for calculation of Young's modulus (E). Average perineal elastic modulus was 11.1 ± 4.3 kPa, levator ani 4.8 ± 2.4 kPa, and symphysis-perineum distance was 30.1 ± 6.9 mm. The pain assessment level for the ATI examination was 2.1 ± 0.8 (scale 1-4); the comfort level was 2.05 ± 0.69 (scale 1-3). CONCLUSIONS: The antepartum examination with the ATI probe allowed measurement of the tissue elasticity and anatomical distances. The pain level was low and the comfort level was comparable with manual palpation.
- Klíčová slova
- Biomechanics of parturition, Elastography, Finite element model, Perineal elasticity, Tactile imaging,
- MeSH
- dospělí MeSH
- elastografie * MeSH
- lidé MeSH
- mladý dospělý MeSH
- pánevní dno * diagnostické zobrazování MeSH
- perineum diagnostické zobrazování MeSH
- porod MeSH
- studie proveditelnosti MeSH
- těhotenství MeSH
- zobrazování trojrozměrné MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH