Most cited article - PubMed ID 30241366
Synthesis and Characterization of Poly(Vinyl Alcohol)-Chitosan-Hydroxyapatite Scaffolds: A Promising Alternative for Bone Tissue Regeneration
Chitosan, fucoidan, and polyvinyl alcohol are categorized as polymers with biomedical applications. Ampicillin, on the other hand, is considered as an important antibiotic that has shown effectivity in both gram-positive and gram-negative micro-organisms. The aforementioned polymers possess unique properties that are considered desirable for cell regeneration although they exhibit drawbacks that can affect their final application. Therefore, films of these biomaterials were prepared and they were characterized using FTIR, SEM, XRD, degree of swelling and solubility, and MTT assay. The statistical significance of the experiments was determined using a two-way analysis of variance (ANOVA) with p < 0.05. The characterization techniques demonstrated that the obtained material exhibits properties suitable for cell regeneration, and that a higher concentration of natural polymers promotes cells proliferation to a greater extent. The presence of PVA, on the other hand, is responsible for matrix stability and dictates the degree of swelling and solubility. The SEM images demonstrated that neither aggregations nor clusters were formed, which is favorable for the biological properties without detrimental to the morphological and physical features. Cell viability was comparatively similar in samples with and without antibiotic, and the physical and biological properties were not negatively affected. Indeed, the inherent bactericidal effect of chitosan was reinforced by the presence of ampicillin. The new material is an outstanding candidate for cell regeneration as a consequence of the synergic effect that each component provides to the blend.
- Keywords
- ampicillin, bioartificial polymeric material, cell proliferation, chitosan, fucoidan, polyvinyl alcohol,
- Publication type
- Journal Article MeSH
Bio-artificial polymeric systems are a new class of polymeric constituents based on blends of synthetic and natural polymers, designed with the purpose of producing new materials that exhibit enhanced properties with respect to the individual components. In this frame, a combination of polyvinyl alcohol (PVA) and chitosan, blended with a widely used antibiotic, sodium ampicillin, has been developed showing a moderate behavior in terms of antibacterial properties. Thus, aqueous solutions of PVA at 1 wt.% were mixed with acid solutions of chitosan at 1 wt.%, followed by adding ampicillin ranging from 0.3 to 1.0 wt.% related to the total amount of the polymers. The prepared bio-artificial polymeric system was characterized by FTIR, SEM, DSC, contact angle measurements, antibacterial activity against Staphylococcus aureus and Escherichia coli and antibiotic release studies. The statistical significance of the antibacterial activity was determined using a multifactorial analysis of variance with ρ < 0.05 (ANOVA). The characterization techniques did not show alterations in the ampicillin structure and the interactions with polymers were limited to intermolecular forces. Therefore, the antibiotic was efficiently released from the matrix and its antibacterial activity was preserved. The system disclosed moderate antibacterial activity against bacterial strains without adding a high antibiotic concentration. The findings of this study suggest that the system may be effective against healthcare-associated infections, a promising view in the design of novel antimicrobial biomaterials potentially suitable for tissue engineering applications.
- Keywords
- ampicillin, bio-artificial polymeric system, chitosan, health-care associated infections, polyvinyl alcohol,
- MeSH
- Ampicillin * chemistry pharmacology MeSH
- Anti-Bacterial Agents * chemical synthesis chemistry pharmacology MeSH
- Chitosan * chemistry pharmacology MeSH
- Escherichia coli growth & development MeSH
- Polyvinyl Alcohol * chemistry pharmacology MeSH
- Staphylococcus aureus growth & development MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Ampicillin * MeSH
- Anti-Bacterial Agents * MeSH
- Chitosan * MeSH
- Polyvinyl Alcohol * MeSH