Nejvíce citovaný článek - PubMed ID 30274281
Incorporation of PVDF Nanofibre Multilayers into Functional Structure for Filtration Applications
In this study, nanoparticle-incorporated nanofiber-covered yarns were prepared using a custom-made needle-free electrospinning system. The ultimate goal of this work was to prepare functional nanofibrous surfaces with antibacterial properties and realize high-speed production. As antibacterial agents, we used various amounts of copper oxide (CuO) and vanadium (V) oxide (V2O5) nanoparticles (NPs). Three yarn preparation speeds (100 m/min, 150 m/min, and 200 m/min) were used for the nanofiber-covered yarn. The results indicate a relationship between the yarn speed, quantity of NPs, and antibacterial efficiency of the material. We found a higher yarn speed to be associated with a lower reduction in bacteria. NP-loaded nanofiber yarns were proven to have excellent antibacterial properties against Gram-negative Escherichia coli (E. coli). CuO exhibited a greater inhibition and bactericidal effect against E. coli than V2O5. In brief, the studied samples are good candidates for use in antibacterial textile surface applications, such as wastewater filtration. As greater attention is being drawn to this field, this work provides new insights regarding the antibacterial textile surfaces of nanofiber-covered yarns.
- Klíčová slova
- PVB, antibacterial, copper, electrospinning, nanoyarn, vanadium,
- MeSH
- antibakteriální látky chemie MeSH
- měď chemie MeSH
- nanovlákna chemie MeSH
- polyvinyly chemie MeSH
- vanad chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- měď MeSH
- polyvinylbutyral MeSH Prohlížeč
- polyvinyly MeSH
- vanad MeSH
Preparing easily scaled up, cost-effective, and recyclable membranes for separation technology is challenging. In the present study, a unique and new type of modified polyvinylidene fluoride (PVDF) nanofibrous membrane was prepared for the separation of oil-water emulsions. Surface modification was done in two steps. In the first step, dehydrofluorination of PVDF membranes was done using an alkaline solution. After the first step, oil removal and permeability of the membranes were dramatically improved. In the second step, TiO2 nanoparticles were grafted onto the surface of the membranes. After adding TiO2 nanoparticles, membranes exhibited outstanding anti-fouling and self-cleaning performance. The as-prepared membranes can be of great use in new green separation technology and have great potential to deal with the separation of oil-water emulsions in the near future.
- Klíčová slova
- PVDF, electrospinning, filtration, membrane, nanofiber, surface modification,
- Publikační typ
- časopisecké články MeSH
Novel electrospun polyacrylonitrile (PAN) nanofibrous membranes were prepared by using heat-press lamination under various conditions. The air permeability and the burst-pressure tests were run to select the membranes for point-of-use air and water cleaning. Membrane characterization was performed by using scanning electron microscopy, contact angle, and average pore size measurements. Selected membranes were used for both air dust filtration and cross-flow water filtration tests. Air dust filter results indicated that electrospun PAN nanofibrous membranes showed very high air-dust filtration efficiency of more than 99.99 % in between PM0.3 and PM2.5, whereas cross-flow filtration test showed very high water permeability over 600 L/(m2hbar) after 6 h of operation. Combining their excellent efficiency and water permeability, these membranes offer an ideal solution to filter both air and water pollutants.
- Klíčová slova
- air filtration, lamination, nanofiber, polyacrylonitrile, water filtration,
- Publikační typ
- časopisecké články MeSH