Nejvíce citovaný článek - PubMed ID 30306531
Low temperature induced modulation of photosynthetic induction in non-acclimated and cold-acclimated Arabidopsis thaliana: chlorophyll a fluorescence and gas-exchange measurements
The Antarctic lichen, Xanthoria elegans, in its hydrated state has several physiological mechanisms to cope with high light effects on the photosynthetic processes of its photobionts. We aim to investigate the changes in primary photochemical processes of photosystem II in response to a short-term photoinhibitory treatment. Several chlorophyll a fluorescence techniques: (1) slow Kautsky kinetics supplemented with quenching mechanism analysis; (2) light response curves of photosynthetic electron transport (ETR); and (3) response curves of non-photochemical quenching (NPQ) were used in order to evaluate the phenomenon of photoinhibition of photosynthesis and its consequent recovery. Our findings suggest that X. elegans copes well with short-term high light (HL) stress due to effective photoprotective mechanisms that are activated during the photoinhibitory treatment. The investigations of quenching mechanisms revealed that photoinhibitory quenching (qIt) was a major non-photochemical quenching in HL-treated X. elegans; qIt relaxed rapidly and returned to pre-photoinhibition levels after a 120 min recovery. We conclude that the Antarctic lichen species X. elegans exhibits a high degree of photoinhibition resistance and effective non-photochemical quenching mechanisms. This photoprotective mechanism may help it survive even repeated periods of high light during the early austral summer season, when lichens are moist and physiologically active.
- Klíčová slova
- Antarctica, James Ross Island, non-photochemical quenching, photoinhibitory quenching,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: With limited agricultural land and increasing human population, it is essential to enhance overall photosynthesis and thus productivity. Oxygenic photosynthesis begins with light absorption, followed by excitation energy transfer to the reaction centres, primary photochemistry, electron and proton transport, NADPH and ATP synthesis, and then CO2 fixation (Calvin-Benson cycle, as well as Hatch-Slack cycle). Here we cover some of the discoveries related to this process, such as the existence of two light reactions and two photosystems connected by an electron transport 'chain' (the Z-scheme), chemiosmotic hypothesis for ATP synthesis, water oxidation clock for oxygen evolution, steps for carbon fixation, and finally the diverse mechanisms of regulatory processes, such as 'state transitions' and 'non-photochemical quenching' of the excited state of chlorophyll a. SCOPE: In this review, we emphasize that mathematical modelling is a highly valuable tool in understanding and making predictions regarding photosynthesis. Different mathematical models have been used to examine current theories on diverse photosynthetic processes; these have been validated through simulation(s) of available experimental data, such as chlorophyll a fluorescence induction, measured with fluorometers using continuous (or modulated) exciting light, and absorbance changes at 820 nm (ΔA820) related to redox changes in P700, the reaction centre of photosystem I. CONCLUSIONS: We highlight here the important role of modelling in deciphering and untangling complex photosynthesis processes taking place simultaneously, as well as in predicting possible ways to obtain higher biomass and productivity in plants, algae and cyanobacteria.
- Klíčová slova
- Calvin–Benson cycle, chlorophyll a fluorescence induction, discoveries in photosynthesis, modelling, non-photochemical quenching (of the excited state of chlorophyll a), photosynthetic electron transport, state transitions,
- MeSH
- biomasa MeSH
- chlorofyl a * MeSH
- chlorofyl MeSH
- fotosyntéza * MeSH
- fotosystém II - proteinový komplex MeSH
- kyslík MeSH
- lidé MeSH
- světlo MeSH
- transport elektronů MeSH
- voda MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- chlorofyl a * MeSH
- chlorofyl MeSH
- fotosystém II - proteinový komplex MeSH
- kyslík MeSH
- voda MeSH
Low temperature decreases PSII damage in vivo, confirming earlier in vitro results. Susceptibility to photoinhibition differs among Arabidopsis accessions and moderately decreases after 2-week cold-treatment. Flavonols may alleviate photoinhibition. The rate of light-induced inactivation of photosystem II (PSII) at 22 and 4 °C was measured from natural accessions of Arabidopsis thaliana (Rschew, Tenela, Columbia-0, Coimbra) grown under optimal conditions (21 °C), and at 4 °C from plants shifted to 4 °C for 2 weeks. Measurements were done in the absence and presence of lincomycin (to block repair). PSII activity was assayed with the chlorophyll a fluorescence parameter Fv/Fm and with light-saturated rate of oxygen evolution using a quinone acceptor. When grown at 21 °C, Rschew was the most tolerant to photoinhibition and Coimbra the least. Damage to PSII, judged from fitting the decrease in oxygen evolution or Fv/Fm to a first-order equation, proceeded more slowly or equally at 4 than at 22 °C. The 2-week cold-treatment decreased photoinhibition at 4 °C consistently in Columbia-0 and Coimbra, whereas in Rschew and Tenela the results depended on the method used to assay photoinhibition. The rate of singlet oxygen production by isolated thylakoid membranes, measured with histidine, stayed the same or slightly decreased with decreasing temperature. On the other hand, measurements of singlet oxygen from leaves with Singlet Oxygen Sensor Green suggest that in vivo more singlet oxygen is produced at 4 °C. Under high light, the PSII electron acceptor QA was more reduced at 4 than at 22 °C. Singlet oxygen production, in vitro or in vivo, did not decrease due to the cold-treatment. Epidermal flavonols increased during the cold-treatment and, in Columbia-0 and Coimbra, the amount correlated with photoinhibition tolerance.
- Klíčová slova
- Acclimation, Charge recombination, Chilling stress, Cold-hardening, Photodamage, Photoinactivation, Reactive oxygen species, SOSG,
- MeSH
- aklimatizace MeSH
- Arabidopsis fyziologie účinky záření MeSH
- chlorofyl a analýza MeSH
- fluorescence MeSH
- fotosystém II - proteinový komplex metabolismus účinky záření MeSH
- listy rostlin fyziologie účinky záření MeSH
- nízká teplota MeSH
- singletový kyslík metabolismus účinky záření MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorofyl a MeSH
- fotosystém II - proteinový komplex MeSH
- singletový kyslík MeSH