Nejvíce citovaný článek - PubMed ID 30332796
Application of HPCCC Combined with Polymeric Resins and HPLC for the Separation of Cyclic Lipopeptides Muscotoxins A⁻C and Their Antimicrobial Activity
Microbial cyclic lipopeptides are an important class of antifungal compounds with applications in pharmacology and biotechnology. However, the cytotoxicity of many cyclic lipopeptides limits their potential as antifungal drugs. Here we present a structure-activity relationship study on the puwainaphycin/minutissamide (PUW/MIN) family of cyclic lipopeptides isolated from cyanobacteria. PUWs/MINs with variable fatty acid chain lengths differed in the dynamic of their cytotoxic effect despite their similar IC50 after 48 hours (2.8 μM for MIN A and 3.2 μM for PUW F). Furthermore, they exhibited different antifungal potency with the lowest MIC values obtained for MIN A and PUW F against the facultative human pathogen Aspergillus fumigatus (37 μM) and the plant pathogen Alternaria alternata (0.6 μM), respectively. We used a Grignard-reaction with alkylmagnesium halides to lengthen the lipopeptide FA moiety as well as the Steglich esterification on the free hydroxyl substituents to prepare semi-synthetic lipopeptide variants possessing multiple fatty acid tails. Cyclic lipopeptides with extended and branched FA tails showed improved strain-specific antifungal activity against A. fumigatus (MIC = 0.5-3.8 μM) and A. alternata (MIC = 0.1-0.5 μM), but with partial retention of the cytotoxic effect (∼10-20 μM). However, lipopeptides with esterified free hydroxyl groups possessed substantially higher antifungal potencies, especially against A. alternata (MIC = 0.2-0.6 μM), and greatly reduced or abolished cytotoxic activity (>20 μM). Our findings pave the way for a generation of semi-synthetic variants of lipopeptides with improved and selective antifungal activities.
- Publikační typ
- časopisecké články MeSH
Phaeodactylum tricornutum is a rich source of fucoxanthin, a carotenoid with several health benefits. In the present study, high performance countercurrent chromatography (HPCCC) was used to isolate fucoxanthin from an extract of P. tricornutum. A multiple sequential injection HPCCC method was developed combining two elution modes (reverse phase and extrusion). The lower phase of a biphasic solvent system (n-heptane, ethyl acetate, ethanol and water, ratio 5/5/6/3, v/v/v/v) was used as the mobile phase, while the upper phase was the stationary phase. Ten consecutive sample injections (240 mg of extract each) were performed leading to the separation of 38 mg fucoxanthin with purity of 97% and a recovery of 98%. The process throughput was 0.189 g/h, while the efficiency per gram of fucoxanthin was 0.003 g/h. Environmental risk and general process evaluation factors were used for assessment of the developed separation method and compared with existing fucoxanthin liquid-liquid isolation methods. The isolated fucoxanthin retained its well-described ability to induce nuclear translocation of transcription factor FOXO3. Overall, the developed isolation method may represent a useful model to produce biologically active fucoxanthin from diatom biomass.
- Klíčová slova
- Phaeodactylum tricornutum, centrifugal partition chromatography (CPC), countercurrent chromatography (CCC), fucoxanthin, high performance countercurrent chromatography (HPCCC),
- MeSH
- protiproudá chromatografie MeSH
- rozsivky chemie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- xanthofyly chemie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fucoxanthin MeSH Prohlížeč
- xanthofyly MeSH
The rapid emergence of resistance in pathogenic bacteria together with a steep decline in economic incentives has rendered a new wave in the drug development by the pharmaceutical industry and researchers. Since cyanobacteria are recognized as wide producers of pharmaceutically important compounds, we investigated thirty-four cyanobacterial extracts prepared by solvents of different polarities for their antimicrobial potential. Almost all tested cyanobacterial strains exhibited some degree of antimicrobial bioactivity, with more general effect on fungal strains compared with bacteria. Surprisingly ~50% of cyanobacterial extracts exhibited specific activity against one or few bacterial indicator strains with Gram-positive bacteria being more affected. Extracts of two most promising strains were subjected to activity-guided fractionation and determination of the minimum inhibitory concentration (MIC) against selected bacterial and fungal isolates. Multiple fractions were responsible for their antimicrobial effect with MIC reaching low-micromolar concentrations and in some of them high level of specificity was recorded. Twenty-six bioactive fractions analyzed on LC-HRMS/MS and Global Natural Product Social Molecular Networking (GNPS) online workflow using dereplication resulted in identification of only forty-nine peptide spectrum matches (PSMs) with eleven unique metabolites spectrum matches (MSMs). Interestingly, only three fractions from Nostoc calcicola Lukešová 3/97 and four fractions from Desmonostoc sp. Cc2 showed the presence of unique MSMs suggesting the presence of unknown antimicrobial metabolites among majority of bioactive fractions from both the strains. Our results highlight potential for isolation and discovery of potential antimicrobial bioactive lead molecules from cyanobacterial extracts.