Nejvíce citovaný článek - PubMed ID 30401896
Kyasanur Forest disease virus infection activates human vascular endothelial cells and monocyte-derived dendritic cells
The tick-borne encephalitis virus (TBEV) causes a most important viral life-threatening illness transmitted by ticks. The interactions between the virus and ticks are largely unexplored, indicating a lack of experimental tools and systematic studies. One such tool is recombinant reporter TBEV, offering antibody-free visualization to facilitate studies of transmission and interactions between a tick vector and a virus. In this paper, we utilized a recently developed recombinant TBEV expressing the reporter gene mCherry to study its fitness in various tick-derived in vitro cell cultures and live unfed nymphal Ixodes ricinus ticks. The reporter virus was successfully replicated in tick cell lines and live ticks as confirmed by the plaque assay and the mCherry-specific polymerase chain reaction (PCR). Although a strong mCherry signal determined by fluorescence microscopy was detected in several tick cell lines, the fluorescence of the reporter was not observed in the live ticks, corroborated also by immunoblotting. Our data indicate that the mCherry reporter TBEV might be an excellent tool for studying TBEV-tick interactions using a tick in vitro model. However, physiological attributes of a live tick, likely contributing to the inactivity of the reporter, warrant further development of reporter-tagged viruses to study TBEV in ticks in vivo.
- Klíčová slova
- Ixodes ricinus, TBEV, mCherry reporter, tick cell culture, tick-borne encephalitis virus, ticks, viral reverse genetics,
- MeSH
- buněčné linie MeSH
- klíště * MeSH
- klíšťová encefalitida * MeSH
- polymerázová řetězová reakce MeSH
- teoretické modely MeSH
- viry klíšťové encefalitidy * genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Tick-borne encephalitis virus (TBEV) is the most medically relevant tick-transmitted Flavivirus in Eurasia, targeting the host central nervous system and frequently causing severe encephalitis. The primary function of its capsid protein (TBEVC) is to recruit the viral RNA and form a nucleocapsid. Additional functionality of Flavivirus capsid proteins has been documented, but further investigation is needed for TBEVC. Here, we show the first capsid protein 3D structure of a member of the tick-borne flaviviruses group. The structure of monomeric Δ16-TBEVC was determined using high-resolution multidimensional NMR spectroscopy. Based on natural in vitro TBEVC homodimerization, the dimeric interfaces were identified by hydrogen deuterium exchange mass spectrometry (MS). Although the assembly of flaviviruses occurs in endoplasmic reticulum-derived vesicles, we observed that TBEVC protein also accumulated in the nuclei and nucleoli of infected cells. In addition, the predicted bipartite nuclear localization sequence in the TBEVC C-terminal part was confirmed experimentally, and we described the interface between TBEVC bipartite nuclear localization sequence and import adapter protein importin-alpha using X-ray crystallography. Furthermore, our coimmunoprecipitation coupled with MS identification revealed 214 interaction partners of TBEVC, including viral envelope and nonstructural NS5 proteins and a wide variety of host proteins involved mainly in rRNA processing and translation initiation. Metabolic labeling experiments further confirmed that TBEVC and other flaviviral capsid proteins are able to induce translational shutoff and decrease of 18S rRNA. These findings may substantially help to design a targeted therapy against TBEV.
- Klíčová slova
- capsid, nucleolus, nucleus, protein structure, tick-borne flaviviruses, translational shutoff,
- MeSH
- kapsida metabolismus MeSH
- RNA virová metabolismus MeSH
- virové nestrukturální proteiny metabolismus MeSH
- virové plášťové proteiny genetika metabolismus MeSH
- viry klíšťové encefalitidy * genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA virová MeSH
- virové nestrukturální proteiny MeSH
- virové plášťové proteiny MeSH
Usutu virus (USUV) is a flavivirus (Flaviviridae: Flavivirus) of an African origin transmitted among its natural hosts (diverse species of birds) by mosquitoes. The virus was introduced multiple times to Europe where it caused mortality of blackbirds (Turdus merula) and certain other susceptible species of birds. In this study, we report detection of USUV RNA in blackbirds, Culex pipiens and Cx. modestus mosquitoes in the Czech Republic, and isolation of 10 new Czech USUV strains from carcasses of blackbirds in cell culture. Multiple lineages (Europe 1, 2 and Africa 3) of USUV were found in blackbirds and mosquitoes in the southeastern part of the country. A single USUV lineage (Europe 3) was found in Prague and was likely associated with increased mortalities in the local blackbird population seen in this area in 2018. USUV genomic RNA (lineage Europe 2) was detected in a pool of Cx. pipiens mosquitoes from South Bohemia (southern part of the country), where no major mortality of birds has been reported so far, and no flavivirus RNA has been found in randomly sampled cadavers of blackbirds. The obtained data contributes to our knowledge about USUV genetic variability, distribution and spread in Central Europe.
- Klíčová slova
- Culex spp., Usutu virus, blackbird, mosquito,
- Publikační typ
- časopisecké články MeSH