Nejvíce citovaný článek - PubMed ID 30433803
Strain differences in intraluminal thread model of middle cerebral artery occlusion in rats
100 rats were randomly divided into a sham-operated group and middle cerebral artery occlusion (MCAO) modeling groups. The sham group after surgery was observed for 14 days. After MCAO, some rats received isometric contraction training (ICT) which was as follows: an atraumatic tourniquet was placed around left or right hind limb to achieve hind limb ischemia for 5 min, followed by 5 min of reperfusion, 4 cycles for one time, once a day, and five days per week. The MCAO modeling groups included the following four groups: i) a group only received MCAO, and was observed for seven days (MCAO-7d), ii) a group only received MCAO, and was observed for 14 days (MCAO-14d), iii) a group, after MCAO, received ICT for seven days (ICT-7d), and iv) a group, after MCAO, received ICT for 14 days (ICT-14d). Brain infarct area, behavioral outcomes, the number of neurons, apoptosis, cerebral edema and cerebral water content were assessed, respectively. The mRNA expression of vascular endothelial growth factor (VEGF) was assayed with RT-PCR, and protein expression of VEGF was quantified with western blot. compared with MCAO controls, cerebral infarction, neurological deficits and neuronal apoptosis were reduced significantly in the ICT groups, while the number of neurons was increased. Moreover, the mRNA expression of VEGF and protein expression of VEGF were enhanced after 1 and 2 weeks of ICT. ICT may promote angiogenesis and neuroprotection after ischemic stroke and this new remodeling method provide a novel strategy for rehabilitation of stroke patients.
- MeSH
- cévní mozková příhoda * terapie MeSH
- infarkt arteria cerebri media MeSH
- ischemie mozku * metabolismus MeSH
- isometrická kontrakce * MeSH
- kondiční příprava zvířat * MeSH
- krysa rodu Rattus MeSH
- messenger RNA MeSH
- modely nemocí na zvířatech MeSH
- neuroprotekce MeSH
- potkani Sprague-Dawley MeSH
- vaskulární endoteliální růstový faktor A metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- messenger RNA MeSH
- vaskulární endoteliální růstový faktor A MeSH
Perinatal hypoxic-ischemic insult (HII) is one of the main devastating causes of morbidity and mortality in newborns. HII induces brain injury which evolves to neurological sequelae later in life. Hypothermia is the only therapeutic approach available capable of diminishing brain impairment after HII. Finding a novel therapeutic method to reduce the severity of brain injury and its consequences is critical in neonatology. The present paper aimed to evaluate the effect of sulforaphane (SFN) pre-treatment on glucose metabolism, neurodegeneration, and functional outcome at the acute, sub-acute, and sub-chronic time intervals in the experimental model of perinatal hypoxic-ischemic insult in rats. To estimate the effect of SFN on brain glucose uptake we have performed 18F-deoxyglucose (FDG) microCT/PET. The activity of FDG was determined in the hippocampus and sensorimotor cortex. Neurodegeneration was assessed by histological analysis of Nissl-stained brain sections. To investigate functional outcomes a battery of behavioral tests was employed. We have shown that although SFN possesses a protective effect on glucose uptake in the ischemic hippocampus 24 h and 1 week after HII, no effect has been observed in the motor cortex. We have further shown that the ischemic hippocampal formation tends to be thinner in HIE and SFN treatment tends to reverse this pattern. We have observed subtle chronic movement deficit after HII detected by ladder rung walking test with no protective effect of SFN. SFN should be thus considered as a potent neuroprotective drug with the capability to interfere with pathophysiological processes triggered by perinatal hypoxic-ischemic insult.
- MeSH
- fluorodeoxyglukosa F18 terapeutické užití MeSH
- glukosa MeSH
- hypoxie komplikace MeSH
- isothiokyanatany MeSH
- krysa rodu Rattus MeSH
- mozek diagnostické zobrazování patologie MeSH
- mozková hypoxie a ischemie * diagnostické zobrazování farmakoterapie MeSH
- novorozená zvířata MeSH
- poranění mozku * MeSH
- sulfoxidy MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fluorodeoxyglukosa F18 MeSH
- glukosa MeSH
- isothiokyanatany MeSH
- sulforaphane MeSH Prohlížeč
- sulfoxidy MeSH
Status epilepticus (SE) is a common paediatric emergency with the highest incidence in the neonatal period and is a well-known epileptogenic insult. As previously established in various experimental and human studies, SE induces long-term alterations to brain metabolism, alterations that directly contribute to the development of epilepsy. To influence these changes, organic isothiocyanate compound sulforaphane (SFN) has been used in the present study for its known effect of enhancing antioxidative, cytoprotective, and metabolic cellular properties via the Nrf2 pathway. We have explored the effect of SFN in a model of acquired epilepsy induced by Li-Cl pilocarpine in immature rats (12 days old). Energy metabolites PCr, ATP, glucose, glycogen, and lactate were determined by enzymatic fluorimetric methods during the acute phase of SE. Protein expression was evaluated by Western blot (WB) analysis. Neuronal death was scored on the FluoroJadeB stained brain sections harvested 24 h after SE. To assess the effect of SFN on glucose metabolism we have performed a series of 18F-DG μCT/PET recordings 1 h, 1 day, and 3 weeks after the induction of SE. Responses of cerebral blood flow (CBF) to electrical stimulation and their influence by SFN were evaluated by laser Doppler flowmetry (LDF). We have demonstrated that the Nrf2 pathway is upregulated in the CNS of immature rats after SFN treatment. In the animals that had undergone SE, SFN was responsible for lowering glucose uptake in most regions 1 h after the induction of SE. Moreover, SFN partially reversed hypometabolism observed after 24 h and achieved full reversal at approximately 3 weeks after SE. Since no difference in cell death was observed in SFN treated group, these changes cannot be attributed to differences in neurodegeneration. SFN per se did not affect the glucose uptake at any given time point suggesting that SFN improves endogenous CNS ability to adapt to the epileptogenic insult. Furthermore, we had discovered that SFN improves blood flow and accelerates CBF response to electrical stimulation. Our findings suggest that SFN improves metabolic changes induced by SE which have been identified during epileptogenesis in various animal models of acquired epilepsy.
- Klíčová slova
- brain, cerebral blood flow (CBF), glucose metabolism, immature rat, pilocarpine, status epilepticus, sulforaphane, μCT/PET,
- Publikační typ
- časopisecké články MeSH